
オイラー・ラグランジュ方程式

解析力学の中心にいるオイラー・ラグランジュ方程式の導出をします。

最初に変分に触れていますが、細かいことを気にする必要はないです。

　解析力学は、経験的なニュートン力学を理論より（抽象的）にするために作られたものです。この解析力学で使

われる発想は量子論へ移行するさい重要になるので、量子論をやる人は解析力学をある程度やっておいた方がい

いです。また、古典論である相対論においても重要で、知らないと測地線のあたりで何をしているのか分からな

くなります。

　オイラー・ラグランジュ(Euler-Lagrange)方程式はもともとは数学での最短距離の問題 (変分問題)から導出さ

れています。なので、先にこれについて簡単に見ておきます。詳しいこと「変分問題」を見てください。

　元々はベルヌーイによる最速降下曲線 (Brachistochrone)の問題から始まっていますが、この問題は現在では

J =

∫ b

a

dx F (x, y(x),
dy

dx
) (1)

という積分において、J の極値を与える関数 y は何かという問題に一般化されています。これを扱う数学の分野

が変分法です。細かいことは省いて見ていきます。

　関数 f(x)の極値となる xは

df(x)

dx
= 0

で与えられます。極値の式は、微小な∆xに対して

df(x+ t∆x)

dt
|t=0 =

d

dt
(f(x) +

df

dx
t∆x+ · · · )|t=0 =

df(x)

dx
∆x = ∆f

から、∆f = 0になることと同じです。なので、極値は極値を与える地点 (停留点)から微小にズラしても関数は

変化しない、ということによって定義できます。

　極値を与える関数からのズレの関数を ϵη(x)とし、η(a) = η(b) = 0とします。ズレを与える関数を変分 (variation)

と言います。このときの J の差は

∆J = J [y + ϵη]− J [y] =

∫ b

a

dx (F (x, y + ϵη, y′ + ϵη′)− F (x, y, y′)) (y′ =
dy

dx
, η′ =

dη

dx
) (2)

∆J は J の変分と呼ばれます。ϵを微小として 1次までで展開すると

F (x, y + ϵη, y′ + ϵη′)− F (x, y, y′) ≃ F (x, y, y′) + ϵ(η
∂F

∂y
+ η′

∂F

∂y′
)− F (x, y, y′)

= ϵ(η
∂F

∂y
+ η′

∂F

∂y′
)

なので

∆J =

∫ b

a

dx ϵ(η
∂F

∂y
+ η′

∂F

∂y′
)
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部分積分と η(a) = η(b) = 0から

∫ b

a

dx η′
∂F

∂y′
=

[
η
∂F

∂y′
]b
a
−
∫ b

a

dx η
d

dx

∂F

∂y′
= −

∫ b

a

dx η
d

dx

∂F

∂y′

となるので

∆J =

∫ b

a

dx ϵη(
∂F

∂y
− d

dx

∂F

∂y′
)

これが 0になればいいので（下の補足参照）

d

dx

∂F

∂y′
− ∂F

∂y
= 0

となる関数 y によって極値が与えられます。これをオイラー・ラグランジュ方程式と言います（項の並びを変え

ているのはこの順番で書くことが多いというだけ）。このように、オイラー・ラグランジュ方程式は変分に対して

(1)が極値になるための式として導かれました。

　今の結果が力学とどう対応しているのか見ていきます。最初にただの式変形を行います。3次元デカルト座標と

します。保存力 F が作用している質量mを持つ質点の運動の軌道 r(t) = (x(t), y(t), z(t))はニュートンの運動方

程式によって

m
d2r

dt2
= F (F = −∇U(r, t))

v = dr/dt = (vx, vy, vz)として

m
dvx
dt

= −∂U

∂x
, m

dvy
dt

= −∂U

∂y
, m

dvz
dt

= −∂U

∂z

これらは偏微分によって

d

dt

∂

∂vx
(
1

2
m(v2x + v2y + v2z)) +

∂U

∂x
= 0

d

dt

∂

∂vy
(
1

2
m(v2x + v2y + v2z)) +

∂U

∂y
= 0

d

dt

∂

∂vz
(
1

2
m(v2x + v2y + v2z)) +

∂U

∂z
= 0

と書けます。そうすると

∂

∂x
(
1

2
m(v2x + v2y + v2z)− U(r, t)) =

∂

∂x
L(r,

dr

dt
, t) = −∂U

∂x

∂

∂vx
(
1

2
m(v2x + v2y + v2z)− U(r, t)) =

∂

∂vx
L(r,

dr

dt
, t) = mvx

のようになっているので、運動方程式の各成分は
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d

dt

∂L

∂vx
− ∂L

∂x
= 0 ,

d

dt

∂L

∂vy
− ∂L

∂y
= 0 ,

d

dt

∂L

∂vz
− ∂L

∂z
= 0

と書けます。これをオイラー・ラグランジュ方程式と一致しています。運動エネルギー T とポテンシャル U によ

る L = T −U はラグランジアン (Lagrangian)と呼ばれます。エネルギーの次元を持っていますが、ラグランジア

ン自体は観測量に対応する物理量ではないことに注意してください。

　というわけで、運動方程式を変形するとオイラー・ラグランジュ方程式が出てきます。このことから、(1)と関

係していると予想できるので、運動エネルギーの変分を考えてみます。

　現実の粒子のある地点からある地点までの経路は運動方程式に従いますが、その経路から少しズレた経路を考

えます。この仮想的な経路は現実の経路 r(t)から δr(t)だけズレた r(t) + δr(t)になっているとします (ここでの

δは∆rでの∆と同じ使い方)。δrは経路の変分です。そして、経路の始点 r(t1)と終点 r(t2)は現実の経路と仮

想の経路で同じと設定します (始点から終点への間の経路が δrだけズレている)。この条件は

δr(t1) = δr(t2) = 0

と与えます。

　変分の表記の注意をしておきます。微小変化の量として dxや∆xと表記したものがありますが、これらは現実

経路での微小変位の意味として使われ、変分 δxは現実経路からの微小なズレの意味です。また、xに依存する関

数 f の微小変化を df, δf として

df = f(x+ dx)− f(x) , δf = f(x+ δx)− f(x)

と書くと、見た目は同じになりますが意味は異なっています。δf は関数 f の変分です。

　変分での δは一般的に微分と積分の外に出せるという性質を持っていて、x(u)に対して

d

du
(δx) = δ

dx

du∫
du δx = δ

∫
du x

とできます。dxが x(u+ du)と x(u)の差を表す記号であるために、dは xを x(u+ du)− x(u)とする演算記号と

とらえることで

δ(dx) = δ(x(u+ du)− x(u)) = δx(u+ du)− δx(u)

d(δx) = δx(u+ du)− δx(u)

となるので、δ(dx)と d(δx)が一致します。

　変分の注意は終わりにして、変分によって運動エネルギーがどうなるか見ます。現実の経路 (運動方程式で与え

られる粒子の軌道)での運動エネルギーは

T (ẋ, ẏ, ż) =
1

2
mẋ2 +

1

2
mẏ2 +

1

2
mż2 (ẋ =

dx

dt
, ẍ =

d2x

dt2
)
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上についているドット「·」は時間微分を表します。x, y, zに対してそれぞれ同じことをするので、xだけで見てい

きます。仮想経路では δxだけズレていることから

Tx(ẋ+ δẋ) =
1

2
m(ẋ+ δẋ)2 (δ

dx

dt
=

dδx

dt
)

変数を省いて書いていますが、δx(t)として時間を変数に持っているので、微分して δẋとしています。そうする

と、運動エネルギーの変分は

δTx = T (ẋ+ δẋ)− T (ẋ)

=
m

2
{(ẋ+ δẋ)2 − ẋ2}

= mẋδẋ+
m(δẋ)2

2

δxは微小量として、(δẋ)2 は無視してしまい

δTx = mẋδẋ

この変分を時間で積分してみると (積分範囲は始点 t1 から終点 t2)

∫ t2

t1

dtδTx =

∫ t2

t1

mẋδẋ

=

∫ t2

t1

dt(m
d

dt
ẋδx−mẍδx)

=
[
mẋδx

]t2
t1
−m

∫ t2

t1

dtẍδx

= mẋδx(t2)−mẋδx(t1)−m

∫ t2

t1

dtẍδx

= −m

∫ t2

t1

dtẍδx

最後へは条件 δx(t1) = δx(t2) = 0から、第 1項と第 2項が 0になるためです。他の成分も同じなので

∫ t2

t1

dtδT = −m

∫ t2

t1

dtẍδx−m

∫ t2

t1

dtÿδy −m

∫ t2

t1

dtz̈δz (3)

右辺にニュートンの運動方程式を使えば

−m

∫ t2

t1

dtẍδx−m

∫ t2

t1

dtÿδy −m

∫ t2

t1

dtz̈δz =

∫ t2

t1

dt∇U · δr

これは偏微分の規則から
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δU = ∇U · δr =
∂U

∂x
δx+

∂U

∂y
δy +

∂U

∂z
δz

として、ポテンシャルの変分 δU として書けます。よって、(3)は

∫ t2

t1

dt(δT − δU) = δ

∫ t2

t1

dt(T − U) = δ

∫ t2

t1

dt L(r(t), ṙ(t), t) = 0 (4)

δT は δṙ、δU は δrによる変化になっていることに注意してください。

　ラグランジアンの時間積分

S =

∫ t2

t1

dt L(r(t), ṙ(t), t)

を作用 (action)と呼びます。そうすると、(4)から、作用の変分

δS = δ

∫ t2

t1

dt L =

∫ t2

t1

dt δL

が 0のとき、x(t)は現実の経路となります ((4)は運動方程式が成立しているとして求められている)。このことを

最小作用の原理 (principle of least action)やハミルトン (Hamilton)の原理や変分原理 (variational principle)と

言います。(1)との対応で言えば、作用 S が極値（作用の変分 δS が 0）となる x(t)が現実の経路を与えるという

ことです。そして、その極値としての x(t)はオイラー・ラグランジュ方程式に従っています。

　作用 S と関数 xの関係についてもう少し言っておきます。ここでは先に xは運動方程式の解としましたが、一

般的には xは運動方程式の解ではないです。いくつもある関数の中から特定の関数を選ぶと δS = 0になり、それ

が現実の経路を与えています (関数を変数とする関数は汎関数と呼ばれ、Sは関数 xを変数とする汎関数になって

いる)。言い換えると、時間 t1 での点 aから時間 t2 での点 bまでの経路は多数存在し、それぞれに対応した S が

計算され、それらの内で現実の経路となるのは δS = 0にするものだということです。

　実際に、ラグランジアンの変分と δS = 0からオイラー・ラグランジュ方程式が出てくることを見ます。運動エ

ネルギーとポテンシャルでそれぞれ ˙r, r に対して変分を取っているように、r, ṙ を独立変数とします。そうする

と、ラグランジアンの変分は 1次までで

δL =
∂L

∂x
δx+

∂L

∂ẋ
δẋ+

∂L

∂y
δy +

∂L

∂ẏ
δẏ +

∂L

∂z
δz +

∂L

∂ż
δż

これも各成分で同じになるので、xだけ見ていきます。第 2項に

d

dt
(
∂L

∂ẋ
δx) =

d

dt

∂L

∂ẋ
δx+

∂L

∂ẋ
δẋ

としたものを入れれば

δLx =
∂L

∂x
δx+

d

dt

(∂L
∂ẋ

δx
)
− d

dt

(∂L
∂ẋ

)
δx

これを時間積分して
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∫ t2

t1

dtδLx =

∫ t2

t1

dt
(∂L
∂x

δx+
d

dt
(
∂L

∂ẋ
δx)− d

dt
(
∂L

∂ẋ
)δx

)
=

∫ t2

t1

dt
d

dt
(
∂L

∂ẋ
δx) +

∫ t2

t1

dt
(∂L
∂x

δx− d

dt
(
∂L

∂ẋ
)δx

)
=

[∂L
∂ẋ

δx
]t2
t1
+

∫ t2

t1

dt
(∂L
∂x

δx− d

dt
(
∂L

∂ẋ
)δx

)
=

∫ t2

t1

dtδx
(∂L
∂x

− d

dt

∂L

∂ẋ

)

3行目での第 1項は δx(t2) = δx(t1) = 0から消えます。他の成分も同じです。現実の運動 (経路)に一致するため

には、どんな δrに対しても δS = 0にならないといけないので

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 ,

d

dt

∂L

∂ẏ
− ∂L

∂y
= 0 ,

d

dt

∂L

∂ż
− ∂L

∂z
= 0

となる必要があり (補足参照)、オイラー・ラグランジュ方程式が出てきます。このように、運動方程式より数学

的 (抽象的)なオイラー・ラグランジュ方程式を使って運動を調べるのが解析力学です。

　ここで単語を導入しておきます。今は時間を含めて L(r(t), ṙ(t), t)としていますが、このように tに直接的に依

存しているときは陽に含んでいるやあらわに含んでいると言います。L(r(t), ṙ(t))のように別の関数を通してのみ

依存している場合は、tは陽に含んでいないと言います。例えば

L =
1

2
mẋ2 − a

x

となっているなら、xと ẋだけで tはいないので、tを陽に含んでいないと表現されます (xを通してのみ tの依存

性を持っている)。これに何か適当に

L =
1

2
mẋ2 − a

x
+ bt

として、式の中に tが直接に入ってくるとき、陽に含んでいると言います。tを陽に含む場合の主な変更は連鎖律

から

dL(x, ẋ, t)

dt
=

∂L

∂x

dx

dt
+

∂L

∂ẋ

dẋ

dt
+

∂L

∂t

として、第 3項が現れることです。

　デカルト座標としてきましたが、座標系を指定しないときの座標を一般化座標 (generalized coordinates)と言い

ます。より広く言うと、一般化座標は扱っている全ての粒子の配置を一意的に決められる任意の座標 (独立変数)

のことです。例えば 3次元デカルト座標 (x, y, z)で表される 1つの粒子の位置は座標変換

q1 = f1(x, y, z) , q2 = f2(x, y, z) , q3 = f3(x, y, z)

によって、別の座標系 (q1, q2, q3)へ変更できます (f1, f2, f3という関数に x, y, zを入れることで新しい座標 q1, q2, q3

になる)。任意の座標系としての (q1, q2, q3)がこのときの一般化座標となります。変換を f1, f2, f3 としてますが、

座標変換の式では慣習的に
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q1 = q1(x, y, z) , q2 = q2(x, y, z, t) , q3 = q3(x, y, z)

と書くことが多いです。また、時間を含めた (x, y, z, t)を変換したものとする場合もあります。座標変換は変換前

後の 2つの座標は行き来できるとするので、逆変換

x = g1(q1, q2, q3) , y = g2(q1, q2, q3) , z = g3(q1, q2, q3)

が存在する必要があります。このためにはヤコビアンが 0でなければいいです。

　ちなみに、配置や配位 (configuration)というのは、全ての粒子の位置を表したものです。例えば 2個の粒子が

(x1, y1, z1)と (x2, y2, z2)にいるとき、(x1, y1, z1, x2, y2, z2)としたものが配位です。一般化座標でまとめて書けば

(q1, q2, . . . , qn)となり、nは粒子数と次元で決まります。

　一般化座標で重要な自由度にも触れておきます。力学や解析力学で自由度 (degree of freedom)と言った時は、

大抵は物体の位置を決めるのに必要な独立変数の数を指します。例えば、2次元で 1つの質点を考えたとき、質点

の位置は 2つの独立変数で決められます (xy平面上なら (x, y))。この 2というのが自由度です。質点が 2つあれ

ば、両方の質点の位置を決めるには (x1, y1), (x2, y2)が必要なので、自由度は 4です。

　運動に制限があるなら、自由度が落ちるのが大事な性質です。例えば、1つの質点が半径 rの円運動しているな

ら、x2 + y2 = r2の制限から xか yのどちらかを決めることで片方も決まるので、自由度は 2でなく 1です。この

ように条件 (拘束条件)を入れることで自由度を落とせます。また、円運動の自由度が 1というのは独立変数が 1

つあれば質点の位置が決まると言っているので、例えば独立変数として角度 θを選べば質点の位置は決まります。

実際に角度 θと固定された半径 rで質点の位置は決まります。このように自由度を考えるだけでも分かることが

あるので、自由度の数は重要になっています。

　これらのことから、必要となる一般化座標の数は自由度の数と一致しています (座標は独立変数なので当たり前

といえば当たり前)。2次元の円運動で言えば、半径は rに固定されているので、一般化座標は 1つです。そして、

円運動なので、計算を具体的に行うときには一般化座標を角度 θにすると便利です (力学で円運動を扱うときには

2次元の極座標を使うのと同じ)。

　自由度は分野によって何を指すのかが異なっていますが、基本的には状況を決めるのに必要な独立変数の数で

す。例えば、2 × 2対称行列では自由度は 3と言ったりします。これは対角成分と非対角成分の 1つを決めれば、

残った非対角成分は対称性から決まるからです (2× 2対称行列には 4個の成分があり、自由に決められるのは対

角成分の 2個と非対角成分の片方の 1個なので、自由度は 2 + 1 = 3)。

　オイラー・ラグランジュ方程式の利点として、座標系に依存していないというのがあります。これは一般化座標

qi (i = 1, 2, 3)でも

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0

と書けるという意味です。これを示します。変換前の座標を qi、変換後を Qi とし、これらは

qi = fi(Q) , Qi = f i(q)

と変換されるとします (f は f の逆変換)。変数としては q = (q1, q2, q3), Q = (Q1, Q2, Q3)として、まとめて書い

ています。ラグランジアン L(q, q̇, t)では qによるオイラー・ラグランジュ方程式が成立しているとし、変換後で

のラグランジアン L′(Q, Q̇, t)もQによるオイラー・ラグランジュ方程式になるかを見ます。また、ラグランジア

ンはスカラー量なので、座標変換で値は変わらないとして
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L(q, q̇, t) = L′(Q, Q̇, t)

とします。

　 q̇i と Q̇i は

dqi
dt

=
d

dt
fi(Q1, Q2, Q3) =

3∑
j=1

dQj

dt

∂fi
∂Qj

=

3∑
j=1

Q̇j
∂fi
∂Qj

dQi

dt
=

d

dt
f i(q1, q2, q3) =

3∑
j=1

dqj
dt

∂f i

∂qj
=

3∑
j=1

q̇j
∂f i

∂qj

これを入れれば、変換前のラグランジアン L(q, q̇, t)と変換後のラグランジアン L′(Q, Q̇, t)とは

L(q, q̇, t) = L(f(Q),

3∑
j=1

Q̇j
∂f

∂Qj
, t) = L′(Q, Q̇, t)

となっています。

　 L′ を Qi で偏微分すると

∂L′

∂Qi
=

∂

∂Qi
L(q, q̇, t) =

3∑
j=1

∂qj
∂Qi

∂L

∂qj
+

3∑
j=1

∂q̇j
∂Qi

∂L

∂q̇j

=

3∑
j=1

∂fj(Q)

∂Qi

∂L

∂qj
+

3∑
j=1

∂L

∂q̇j
(

∂

∂Qi

3∑
k=1

Q̇k
∂fj
∂Qk

)

=

3∑
j=1

∂fj
∂Qi

∂L

∂qj
+

3∑
j=1

∂L

∂q̇j
(

3∑
k=1

Q̇k
∂2fj

∂Qi∂Qk
) (5)

Q, Q̇は独立変数なので、Qの偏微分は Q̇と無関係です。Q̇の偏微分では、∂f(Q)/∂Q̇ = 0なので

∂L′

∂Q̇i

=
∂

∂Q̇i

L(q, q̇, t) =

3∑
j=1

∂q̇j

∂Q̇i

∂L

∂q̇j
=

3∑
j=1

(
∂

∂Q̇i

3∑
k=1

Q̇k
∂fj
∂Qk

)
∂L

∂q̇j

=

3∑
j=1

(

3∑
k=1

∂Q̇k

∂Q̇i

∂fj
∂Qk

)
∂L

∂q̇j

=

3∑
j=1

∂fj
∂Qi

∂L

∂q̇j

最後へは、Q̇の微分は k = iのときが 1で k ̸= iでは 0になるからです。これをさらに tで微分すると

d

dt

∂L′

∂Q̇i

=
d

dt

3∑
j=1

∂fj
∂Qi

∂L

∂q̇j
=

3∑
j=1

∂L

∂q̇j
(
d

dt

∂fj
∂Qi

) +

3∑
j=1

∂fj
∂Qi

d

dt

∂L

∂q̇j

=

3∑
j=1

∂L

∂q̇j
(

3∑
k=1

dQk

dt

∂2fj
∂Qk∂Qi

) +

3∑
j=1

∂fj
∂Qi

d

dt

∂L

∂q̇j

8



第 1項は (5)から

3∑
j=1

∂L

∂q̇j
(

3∑
k=1

dQk

dt

∂2fj
∂Qk∂Qi

) =
∂L′

∂Qi
−

3∑
j=1

∂fj
∂Qi

∂L

∂qj

なので

d

dt

∂L′

∂Q̇i

=
∂L′

∂Qi
−

3∑
j=1

∂fj
∂Qi

∂L

∂qj
+

3∑
j=1

∂fj
∂Qi

d

dt

∂L

∂q̇j

d

dt

∂L′

∂Q̇i

− ∂L′

∂Qi
=

3∑
j=1

∂fj
∂Qi

(
d

dt

∂L

∂q̇j
− ∂L

∂qj
)

Lはオイラー・ラグランジュ方程式に従っていることから右辺は 0になるので、L′ でも同じ形のオイラー・ラグ

ランジュ方程式になることが分かります（∂fj/∂Qi ̸= 0は座標変換が可能なための条件）。

　一般化運動量と循環座標 (cyclic coordinate)にも触れておきます。ポテンシャルがないとして、ラグランジア

ンを

L =
1

2
m(ẋ2 + ẏ2 + ż2)

とします。ẋ, ẏ, żでそれぞれ偏微分してみると

∂L

∂ẋ
= mẋ ,

∂L

∂ẏ
= mẏ ,

∂L

∂ż
= mż

となり、これらは運動量です。このようにデカルト座標においてラグランジアンを ṙで偏微分すると運動量 pが

出てきます。これを一般化座標 qi による q̇i での偏微分に置き換えた場合は

pi =
∂L

∂q̇i

となり、これを一般化運動量や共役運動量と呼びます。ラグランジアンはエネルギーの次元、q̇i は速度の次元な

ので、実際に運動量の次元になっています。そして、一般化座標 qiと一般化運動量 piを正準変数と呼びます。pi

は qi の正準共役な量と言ったりもします。

　また、オイラー・ラグランジュ方程式

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0

から

ṗi =
∂L

∂qi

となっていることも分かります。
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　注意すべきなのは、一般化運動量は pi = mq̇iとは定義されていない点です。あくまで位置を表す変数 qiの相方

として pi を定義しているだけです。例えば、3次元座標 (x, y, z)で運動エネルギーがmṙ2/2で与えられるなら、

p = mṙとなるというだけで、一般的にこうなるとは言っていないです。

　ポテンシャルがないときのオイラー・ラグランジュ方程式は ∂L/∂x, ∂L/∂y, ∂L/∂zの項が 0なので

d

dt

∂L

∂ṙi
=

d

dt
mṙi = 0

となり、これは運動量保存の式です。これも一般化座標と一般化運動量によって書き換えると

d

dt

∂L

∂q̇i
=

d

dt
pi = 0 (6)

となります。このように、オイラー・ラグランジュ方程式が (6)の形になっていると、運動量保存の式になりま

す。言い換えれば、ラグランジアンに qiがいなければ運動量保存は出てきます (∂L/∂qi = 0)。このようにラグラ

ンジアンに出てこない座標のことを循環座標 (cyclic coordinate)と呼びます。今のようにポテンシャルがなければ

3次元デカルト座標の x, y, zは循環座標です。他にも例えば、重力によるポテンシャル U = mgzがあるなら x, y

が循環座標となります。

・補足

　 a ≤ x ≤ bでの連続関数 f(x)と、η(a) = η(b) = 0となる任意の連続関数 η(x)があるとします。これらによる

積分が

∫ b

a

dx f(x)η(x) = 0 (η(a) = η(b) = 0) (7)

となっているとき、a ≤ x ≤ bにおいて f(x) = 0となります。これを示します。

　 a ≤ x ≤ bで f(x) > 0と仮定します。ηは任意の連続関数なので、a, bの間の x1, x2 に対して

x1 ≤ x ≤ x2 : η(x) = (x− x1)
2(x− x2)

2

a ≤ x ≤ x1, x2 ≤ x ≤ b : η(x) = 0

とします。この関数は

dη

dx
= 2(x− x1)(x− x2)

2 + 2(x− x1)
2(x− x2) = 2(x− x1)(x− x2)

2(2x− x1 − x2)

から、x = (x1 + x2)/2で最大になる逆 U字型の関数です。この関数を入れると

∫ b

a

dx f(x)η(x) =

∫ x2

x1

dx f(x)(x− x1)
2(x− x2)

2 > 0

f(x) > 0と仮定しているので、積分は正の実数の和になり、0以下になりません。これは (7)と矛盾しています。

f(x) < 0では符号が逆になるだけなので、同様に矛盾した結果になります。よって、ηをうまく選ぶと、積分は 0

ではなくなってしまうので、任意の ηに対して (7)となるのは f(x) = 0のときです。

　 ηの関数形は他にも作れますが、おそらくこれが一番単純です。
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