
オイラー・ラグランジュ方程式の例

オイラー・ラグランジュ方程式と作用の具体的な例をいくつか示します。

「·」は時間微分です。

• 直線運動
　 1次元とし、運動エネルギーの項しかないときのラグランジアンは

L(ẋ) =

∫ t2

t1

dt
1

2
mẋ2

オイラー・ラグランジュ方程式に入れれば

d

dt

∂L

∂ẋ
= m

d2x

dt2
= 0

として、力の作用していない運動方程式になります。これを解くと

dx

dt
= A

x(t) = At+B

A,B は定数です。これは変分問題の視点から言えば、2点間を結ぶ最短の曲線は直線であるということを

言っています。
　簡単に求まるので、作用を求めてみます。作用は

S =

∫ t2

t1

dt L(ẋ) =

∫ t2

t1

dt
1

2
mẋ2 (x(t1) = x1, x(t2) = x2)

これの両端での条件 x(t1) = x1, x(t2) = x2 を入れれば

x1 = At1 +B , x2 = At2 +B

これらから

A =
x2 − x1

t2 − t1

と求まります。そうすると、ẋは

ẋ =
x2 − x1

t2 − t1

よって、運動方程式に従う軌道 (直線)xc(t)での作用は
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S[xc] =

∫ t2

t1

dt
1

2
m(

x2 − x1

t2 − t1
)2

=
1

2
m(

x2 − x1

t2 − t1
)2(t2 − t1)

=
1

2
m
(x2 − x1)

2

t2 − t1

となります。

• 単振り子
　 x軸を横、y軸を縦にとり (上方向を正)、糸の長さ l、重りの質量mの振り子が y軸で静止しているとし、

静止している振り子の位置 (θ = 0)を原点とします。重りには重力加速度 −gが作用し、原点の位置から角

度 θで振動しているとします。そうすると、運動エネルギーは

T =
1

2
m(ẋ2 + ẏ2)

xと yは θを使えば

x = l sin θ , y = l(1− cos θ)

ẋ = lθ̇ cos θ , ẏ = lθ̇ sin θ

これはデカルト座標から極座標への座標変換です。なので、新しい座標 θによってオイラー・ラグランジュ

方程式は書けます (自由度が 1)。
　 T を θで書くと

T =
1

2
ml2θ̇2

原点を基準にしたポテンシャルは、重力加速度によるポテンシャルから

U = mgl(1− cos θ)

なので、ラグランジアン Lは

L(θ, θ̇) = T − U =
1

2
ml2θ̇2 −mgl(1− cos θ)

このラグランジアンでの U は基準の位置や y 軸の方向で変わりますが、結果には影響しません。これを角

度 θに対するオイラー・ラグランジュ方程式に入れて

∂L

∂θ
− d

dt

∂L

∂θ̇
= −mgl sin θ −ml2θ̈ = 0

よって
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θ̈ = −g

l
sin θ

となって、単振り子の運動方程式が出てきます。このように、オイラー・ラグランジュ方程式では座標を変

えるだけですむという利点があります。
　 θを微小と思えば

θ̈ = −g

l
θ

なので、A,C を定数として

θ = A cos(ωt+ C) (ω =

√
g

l
)

という単振動での一般解が出てきます。

• 単振動
　 1次元での単振動でのラグランジアンは

L(x, ẋ) =
1

2
mẋ2 − 1

2
mω2x2

と与えられます。オイラー・ラグランジュ方程式に入れれば

d

dt

∂L

∂ẋ
− ∂L

∂x
= m

d2x

dt2
+mω2x = 0

として、単振動の運動方程式が求まります。
　作用を求めます。単振動の一般解は、A,B を定数として

x(t) = A cos(ωt) +B sin(ωt)

時間に対して x(t1) = x1, x(t2) = x2 とすれば

x1 = A cos(ωt1) +B sin(ωt1)

x2 = A cos(ωt2) +B sin(ωt2)

Aは

x1 sin(ωt2) = A cos(ωt1) sin(ωt2) +B sin(ωt1) sin(ωt2)

x2 sin(ωt1) = A cos(ωt2) sin(ωt1) +B sin(ωt2) sin(ωt1)

として
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A =
x1 sin(ωt2)− x2 sin(ωt1)

sin(ωt2) cos(ωt1)− cos(ωt2) sin(ωt1)
=

x1 sin(ωt2)− x2 sin(ωt1)

sin(ω(t2 − t1))

B も同様に

B =
x1 cos(ωt2)− x2 cos(ωt1)

sin(ω(t1 − t2))

と求まるので

x(t) =
x1 sin(ωt2)− x2 sin(ωt1)

sin(ω(t2 − t1))
cos(ωt) +

x1 cos(ωt2)− x2 cos(ωt1)

sin(ω(t1 − t2))
sin(ωt)

=
1

sin(ω(t2 − t1))

(
x1 sin(ωt2) cos(ωt)− x1 cos(ωt2) sin(ωt)− x2 sin(ωt1) cos(ωt) + x2 cos(ωt1) sin(ωt)

)
=

1

sin(ω(t2 − t1))

(
x1

(
sin(ωt2) cos(ωt)− cos(ωt2) sin(ωt)

)
− x2

(
sin(ωt1) cos(ωt)− cos(ωt1) sin(ωt)

))
=

1

sin(ω(t2 − t1))

(
x1 sin(ω(t2 − t))− x2 sin(ω(t1 − t))

)
時間微分すると

ẋ(t) =
1

sin(ω(t2 − t1))

(
− x1 cos(ω(t2 − t)) + x2 cos(ω(t1 − t))

)
となります。
　作用は部分積分によって (xは時間依存していることに注意)

S =

∫ t2

t1

dt (
1

2
mẋ2 − 1

2
mω2x2q2)

=
[1
2
mxẋ

]t2
t1
−
∫ t2

t1

dt
1

2
mx

d2x

dt2
−

∫ t2

t1

dt
1

2
mω2x2

=
[1
2
mxẋ

]t2
t1
− 1

2
m

∫ tf

t0

dt(
d2x

dt2
+ ω2x)x

第 2項は運動方程式から 0なので

S =
1

2
m(x(t2)ẋ(t2)− x(t1)ẋ(t1))

これに (τ = t2 − t1, C =
1

sin(ωτ)
)

x(t1) = −C(x1 sin(ω(t1 − t2))− x2 sin(ω(t1 − t1))) = Cx1 sin(ωτ)

x(t2) = Cx2 sin(ωτ)

ẋ(t1) = −Cω(x1 cos(ω(t1 − t2))− x2) = −Cω(x1 cos(ωτ)− x2)

ẋ(t2) = −Cω(x1 cos(ω(t2 − t2))− x2 cos(ω(t2 − t1))) = −Cω(x1 − x2 cos(ωτ))
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これらを入れて

x(t2)ẋ(t2)− x(t1)ẋ(t1)

= − C2ωx2(x1 − x2 cos(ωτ)) sin(ωτ) + C2ωx1(x1 cos(ωτ)− x2) sin(ωτ)

= − C2ω
(
x1x2 sin(ωτ)− x2

2 cos(ωτ) sin(ωτ)− x2
1 cos(ωτ) sin(ωτ) + x1x2 sin(ωτ)

)
= − C2ω

(
2x1x2 sin(ωτ)− (x2

2 + x2
1) cos(ωτ) sin(ωτ)

)
= − ω

sin(ωτ)

(
2x1x2 − (x2

2 + x2
1) cos(ωτ)

)
となるので、作用は

S =
m

2

ω

sin(ωτ)

(
(x2

2 + x2
1) cos(ωτ)− 2x1x2

)
=

mω

2 sinωτ

(
(x2

2 + x2
1) cos(ωτ)− 2x1x2

)
と求まります。

• カテナリー曲線
　工学系でよく使われるものを計算してみます。微分方程式のちょっとした解法例にもなっています。2次元

の xy平面とし、点 P = (a, 0)と点 Q = (b, 0)で両端が固定されている紐を用意します。y軸方向には重力

がかかっているので、紐自身の重さによって垂れ下がっています。このとき紐の微小な領域でのポテンシャ

ル∆U は紐の断面積 A、紐の質量密度 σ、垂れ下がった紐の微小な長さ∆s、重力加速度 gによって

∆U = gyAσ∆s

紐の微小な長さ∆sは直線と近似して∆s =
√
(∆x)2 + (∆y)2です。ここで紐の y座標は xに依存している

と考えて (xy平面で U 字型の線になっているので、紐の y座標は xの関数になっている)、y(x)とします。

そうすると∆yは x座標を xから x+∆xに動かしたときの yの変化∆y = y(x+∆x)− y(x)です。全ポテ

ンシャルは x軸の範囲 aから bで微小領域を足し合わせればいいので

U =
∑
i

∆Ui

これだと xの微小領域 xi で区切られているので、∆x → 0極限を取ります。そうすると

U = gAσ lim
∆x→0

∑
i

y(xi)
√
∆x2

i +∆y2i

= gAσ lim
∆x→0

∑
i

y(xi)

√
1 + (

∆yi
∆x

)2∆x

∆x → 0でルートの中の第 2項は微分になり、和は積分になるので

U = gAσ

∫ b

a

y

√
1 + (

dy

dx
)2dx
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紐は動いていないので運動エネルギーは 0となり、ラグランジアンは U で与えられます。このポテンシャル

をオイラー・ラグランジュ方程式 (ラグランジアンの変数は yと y′ = dy/dx)

∂U

∂y
− d

dx

∂U

∂y′
= 0

に入れると

0 = (1 + y′2)1/2 − d

dx
(yy′(1 + y′2)−1/2)

(1 + y′2)1/2 = y′2(1 + y′2)−1/2 + yy′′(1 + y′2)−1/2 − yy′2y′′(1 + y′2)−3/2

1 + y′2 = y′2 + yy′′ − yy′2y′′(1 + y′2)−1

1 = yy′′ − yy′2y′′(1 + y′2)−1

1 + y′2 = yy′′(1 + y′2)− yy′2y′′

1 + y′2 = yy′′ + yy′2y′′ − yy′2y′′

1 + y′2 = yy′′

という微分方程式なります。これは

y′ = p(x) , y′′ =
dp

dx
=

dy

dx

dp

dy
= p

dp

dy

として

1 + p2

y

=
p
dp

dy∫
dy

y
=

∫
pdp

1 + p2∫
dy

y
=

1

2

∫
dp2

1 + p2

log y =
1

2
log(1 + p2) + C

積分定数 C を logC と取り直して
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log y =
1

2
log(1 + p2) + logC

log y =
1

2
log[C(1 + p2)]

y =
√
C(1 + p2)

p = ±
√

y2

C2
− 1

dy

dx
= ±

√
y2

C2
− 1∫

dy√
y2/C2 − 1

= ±
∫

dx

C

∫
dz√
z2 − 1

= ±
∫

dx (z = y/C)

C cosh−1 z = ± (x+D)

y = C cosh(±x+D

C
)

Dは積分定数、cosh−1 は coshの逆双曲線関数です。積分は

∫
dz√
z2 + a

= cosh−1 z√
|a|

(a < 0)

を使っています。coshの性質

cosh θ = cosh(−θ)

から

cosh(+
x+D

C
) = cosh(−x+D

C
)

なので

y = C cosh(
x+D

C
)

が解になります。よって、オイラー・ラグランジュ方程式を満たす紐の y座標 y(x)はこのようになります。

最初の U の積分から、U を作用 Sと見れるので、最小作用の原理からポテンシャルが最小になっていると言

えます。このようにポテンシャルを最小にする曲線 (今の場合では紐が作る線)をカテナリー曲線 (catenary)、

もしくは懸垂線と言います。
　話は逸れますが、カテナリー曲線は他の方法でも定義されています。まず、任意の曲線を用意します。そ

の曲線を z軸周りで回転させます。このときできる面の表面積を考えます。回転して出来た面上の微小な帯

の面積∆Aは半径 y(x)の円にその厚さ∆s =
√
(∆x)2 +∆(y)2 (曲線の微小な長さ)をかければいいので
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∆A = 2πy
√
(∆x)2 +∆(y)2

なので、面の表面積は上のポテンシャルのときと同じように考えて

A = 2π

∫ b

a

y

√
1 + (

dy

dx
)2

となります。この式はポテンシャルの式と同じ形をしています。このため、曲線を回転させて出来た面の表

面積を最小にするものがカテナリー曲線と定義することもできます。
　さらについでの話として力学っぽく求めた場合も示しておきます。今の状況は、重力と紐の張力のつりあ

いを見ているだけなので、つりあいの式は張力を T として

Ty′′∆x = gAσ
√
(∆x)2 + (∆y)2

と書けます。左辺が張力部分で右辺が重力部分です (力学の「弦の振動」で弦の微小な長さを δxと近似して

いない場合)。微小部分は微分に変えて変形していくと

Ty′′ = gAσ
√

1 + y′2

y′′ = a
√
1 + y′2 (a = gAσ/T )

y′ = p(x)として y′′ = dp/dxとすれば

dp

dx
= a

√
1 + p2∫

dp√
1 + p2

= a(x+ C)

sinh−1 p = ax+ C

p = sinh(a(x+ C))

dy

dx
= sinh(a(x+ C))

y =
1

a
cosh(a(x+ C)) +D

C,Dは積分定数です。途中の積分で

∫
dp√
p2 + a

= sinh−1 p√
a

(a > 0)

を使っています (sinh−1 は sinhの逆双曲線関数)。というわけで、運動方程式の一般解は

y =
T

gAσ
cosh(

gAσ

T
(x+ C)) +D
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C,Dは紐の位置を与えることで決まります。紐の長さとかを決めることで張力の値を求めたりもできます。

例えば、紐が原点を中心に対称だとすれば紐の端 (x0, y(x0))と (−x0, y(−x0))において y(x0) = y(−x0)な

ので

T

gAσ
cosh(

gAσ

T
(x0 + C)) +D =

T

gAσ
cosh(

gAσ

T
(−x0 + C)) +D

DはなんでもいいのでD = 0として、cosh θ = cosh(−θ)から C = 0となるので

y =
T

gAσ
cosh(

gAσ

T
x)

これに紐の長さや質量を入れることで張力が求まります。また、オイラー・ラグランジュ方程式から求めた

場合でも同じように対称だとすると

y = C cosh(
x

C
)

となって同じになります。このように両端を固定した物体の重力とのつりあいによる情報をカテナリー曲線

は持っているので工学系ではよく使われます。
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