
円と球の積分

物理では円や球の範囲での積分がよく出てくるので、それについて見ていきます。最初に 2重積分の簡単な話を

していますが、飛ばしてもおそらく平気です。

　変数が複数あるときの積分を多重積分 (multiple integral)と言い、2個なら 2重積分 (double integral)、3個な

ら 3重積分 (triple integral)、n個なら n重積分となります。2重積分について数学的なことは無視して簡単に説

明しておきます。

　まず、a ≤ x ≤ bにおける関数 f(x)の積分は簡単に言えば

lim
n→∞

n∑
i=1

f(x)∆x =

∫ b

a

dx f(x) (∆x =
b− a

n
) (1)

と定義されています。これを変数が 2個の場合に拡張します。

　変数が 2個なので 2次元の面を使います。xy平面上のある閉じている領域 Rがあるとして、領域 Rにおける

微小な面 Ri を足し合わせることを考えます。領域 Rを x軸に垂直な線と y軸に垂直な線によって n個の長方形

に分割し、その長方形の各面積を ∆Ai とします。領域 Rが四角形でなければ領域 Rからはみ出る長方形が現れ

ますが、∆Aiを小さくしていけば領域 Rの形に近づいていくと考えます。∆Aiの位置を xi, yiで指定すれば、そ

の地点での x, yを変数に持つ関数は f(xi, yi)とできます。後は (1)と同じようにして

n∑
i=1

f(xi, yi)∆Ai = f(x1, y1)∆A1 + f(x2, y2)∆A2 + · · · f(xn, yn)∆An

とした和を作り、n → ∞ (∆Ai → 0)の極限にしたものを

lim
n→∞

n∑
i=1

f(xi, yi)∆Ai =

∫
R

dA f(x, y)

と表記し、これを 2重積分 (double integral)と呼びます。f(x, y) = 1なら領域 Rの面積になります。

　このような積分は物理で頻繁に出てきます。例えば、厚さを無視できるほど薄い面状の物体があり、その面密度

が σ(x, y)で与えられているとき、上でのように物体を微小な長方形で分割した部分の質量は面積∆Ai によって

∆Mi = σ(xi, yi)∆Ai

と与えられます。これを物体の形になるように全て足し合わせれば全体の質量になるので、∆Ai → 0の極限に

よって

M =

∫
R

dA σ(x, y)

となります。Rは物体の範囲です。しかし、実際の問題において 2重積分の定義に従って計算するのは難しい場

合がほとんどです。というわけで、2重積分を計算するための方法を作ります。

　発想は、面積∆Ai の足し合わせを微小な∆x,∆yの足し合わせに変えることで、x, yでの積分にするというも

のです。領域Rにおける微小な長方形の面積が、Rを分割した x軸の微小な幅∆xiと y軸の微小な幅∆yj によっ
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て、∆xi∆yj と書けるとします。i, j は x軸、y軸において x1, x2, . . . , xnと y1, y2, . . . , ymとして分割したときの

i, j 番目の幅です。最初に面そのものを与えるのでなく、x, yの分割から面を作っているために

(x2 − x1)(y2 − y1) = ∆x1∆y1 , (x2 − x1)(y3 − y2) = ∆x1∆y2 , . . .

として、領域 Rにおける微小な長方形の面積を与えています。

　このようにして領域 Rを分割したとき、x, yはそれぞれ独立に値を取れないです。例えば、後で見るように半

径 aの円の円周上であるためには x2 + y2 = a2 という条件がつきます。

　細かいことは無視して、微小面積が∆xi∆yj で与えられているとし、f(xi, yj)による和を i, j に対して取れば

m∑
j=1

n∑
i=1

f(xi, yj)∆xi∆yj

先に iの和を取るようにして (j を固定する)、n → ∞にすると

lim
n→∞

m∑
j=1

( n∑
i=1

f(xi, yj)∆xi

)
∆yj =

m∑
j=1

(
lim
n→∞

n∑
i=1

f(xi, yj)∆xi

)
∆yj =

m∑
j=1

F (yj)∆yj

和と極限の結果を F (yj)としています。m → ∞を取って積分の表記を使うと

lim
m→∞

m∑
j=1

F (yj)∆yj =

∫
dy F (y) =

∫
dy

(
lim

n→∞

n∑
i=1

f(xi, y)∆xi

)
=

∫
dy

∫
dx f(x, y)

と書け、これを累次積分や繰り返し積分 (iterated integral, repeated integral)と言います。xの積分をし、その後

に yの積分をするという積分です。多重積分と累次積分は連続関数であれば一致することがフビニ (Fubini)の定

理によって示されているので、多重積分の計算は累次積分によって行われます。一致するために、大抵の場合で

∫
R

dA f(x, y) =

∫
dy

∫
dx f(x, y)

と書かれます。

　積分範囲を指定せずに書きましたが、積分範囲には気を付ける必要があります。今は 2次元の領域 Rを覆うよ

うに x, yの範囲を決めなくてはならないので、一般的には x, yは独立になっていません。なので、例えば yの範

囲が aから bとなっているとき、xの範囲を領域 Rになるような yに依存した関数によって与えます。領域 Rを

作るためのその関数を h1(y), h2(y)とすれば

∫ b

a

dy

∫ h2(y)

h1(y)

dx f(x, y)

と書けます。累次積分で厄介なのはこの積分範囲を決めることで、これは後で出てくる円の場合を見た方が分か

りやすいです。

　また、積分の順序は変えることができ

∫ b

a

dy

∫ h2(y)

h1(y)

dx f(x, y) =

∫ d

c

dx

∫ g2(x)

g1(x)

dy f(x, y)

2



このときは xの範囲に対応して yが決まるので xに依存する関数で書いています。

　変数が 3個でも考え方は同じです。3重積分は領域 Rが 3次元になるだけなので、微小な直方体の体積を∆V、

変数を x, y, zとすれば

∫
R

dV f(x, y, z) =

∫ b

a

dz

∫ g2(z)

g1(z)

dy

∫ h2(y,z)

h1(y,z)

dx f(x, y, z)

として、x, y, zの累次積分で計算されます。これも積分の順序を変えられます。

　 2重積分、累次積分の表記の注意にも触れておきます。積分の書き方としては

∫
f(x)dx ,

∫
dx f(x)

という 2つがあります。f(x)dxは数学で、dxf(x)は物理で多く使われます。理由は簡単で物理では具体的な f(x)

の積分を行うので、f(x)が長いときは dxf(x)と書いた方が見やすいからです。同様にして累次積分でも

∫ d

c

∫ b

a

f(x, y)dxdy ,

∫ d

c

dy

∫ b

a

f(x, y)dx ,

∫ d

c

dy

∫ b

a

dx f(x, y)

という表記が使われます。xの範囲を a, b、yの範囲を c, dとしています。積分範囲が揃っているときは

∫ b

a

dxdy

と書いたりもします。一番左のは紛らわしくないように

∫ d

c

∫ b

a

f(x)dxdy =

∫ d

c

( ∫ b

a

f(x)dx
)
dy

としている場合もたまにあります。ただし、2重積分の意味で

∫
R

∫
f(x)dxdy

のように書いていることもあります。

　多重積分と累次積分の表記は意味が通じればいいという程度の感覚でかなり自由に使われているので、勘違い

をしないように注意が必要です。

　物理では 2重積分、3重積分より 2次元積分、3次元積分という言い方をしていることのほうが多いです。2次

元なら変数は 2個、3次元なら変数は 3個になるからというだけです。また、累次積分という単語はほぼ出てこな

く、2次元積分、3次元積分は累次積分のことという感覚になっています。

　どういう計算をするのかの具体例を 1つ見ておきます。積分範囲を適当に与えた場合として、f(x) = x+ yの

累次積分は
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∫ 3

0

dy

∫ 3y

y

dx(x+ y) =

∫ 3

0

dy[
1

2
x2 + yx]3yy =

∫ 3

0

dy(
9

2
y2 + 3y2 − 1

2
y2 − y2)

=

∫ 3

0

dy 6y2

=
[
2y3

]3
0

= 54

最初に yは定数のようにして xの積分を実行し、xの範囲が yで与えられているのでそれを xに入れて yの積分

を実行するという計算です。

　領域Rが円の場合を使って円の面積を求めます。円の半径を aとし、円の中心が原点になっているとします。領

域 Rにおける 2重積分と累次積分は、f(x, y) = 1として

∫
R

dA =

∫ b

a

dy

∫ h2(y)

h1(y)

dx

xの積分は yを離散的に書けば、y = a, y1, y2, . . . , y = bのそれぞれに対して領域 Rに含まれるように xの範囲を

決めて積分を実行するという形になっています。なので、y の値に対して円の形になるように xの範囲を与えま

す。例えば、y = 0のとき xは −aから aです。

　半径 aの円であるという条件は x2 + y2 ≤ a2 によって与えられ、yに対する円周上の xの位置は

x = ±
√
a2 − y2 = ±h(y)

このため、yの値に対する xの範囲は −h(y)から h(y)です。この範囲で積分を実行すると

∫
R

dA =

∫ a

−a

dy

∫ h(y)

−h(y)

dx = 2

∫ a

−a

dyh(y) = 2

∫ a

−a

dy
√
a2 − y2

= 4

∫ a

0

dy
√
a2 − y2

= 4a

∫ a

0

dy

√
1− y2

a2

= 4a2
∫ π/2

0

dθ cos θ
√

1− sin2 θ (
y

a
= sin θ , dy = a cos θdθ)

= 4a2
∫ π/2

0

dθ cos2 θ

= 4a2
∫ π/2

0

dθ(
1

2
cos 2θ +

1

2
)

= 4a2
[1
4
sin 2θ +

θ

2

]π/2
0

= 4a2
π

4

= πa2
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となり、円の面積になります。

　この積分は別の見方をすると感覚的に分かりやすくなります。y = 0から y = ∆yの間の部分を見ます。もし、

∆yが十分小さければ、この部分は長方形と見なせます (円弧が直線になるほど∆yが小さい)。そうすると 2a∆y

が面積になります。このようにして円を、x軸の長さが 2
√
a2 − y2、幅が∆yの微小な長方形で分割します。これ

らを yが −aから aの範囲で足し合わせれば円を覆えるので、その和を∆y → 0として積分にすれば

2

∫ a

−a

dy
√
a2 − y2 = 4

∫ a

0

dy
√
a2 − y2 = πa2

というわけで、円の面積になります。このような計算を行うために、xの範囲は求めたい領域 Rを囲む曲線の関

数として与えられます。

　このような円の積分は物理の問題でよく出てきますが、今のようにデカルト座標でなく極座標で行ったほうが

簡単に求められます。それを見ていきます。

　まず、累次積分は微小面積∆x∆yを作るところから始まっています。なので、∆x∆yを極座標で作れば、その

まま極座標での累次積分にできます。作り方は簡単です。

　原点とある点とのベクトルを r、x軸と rとの間の角度 (x軸から rへ向かう方向を正)をとして、2次元極座標

(r, θ)を与えます。このとき θから∆θ動かしたときの円弧は r∆θ (r = |r|)で与えられ、円弧を直線と見なせる程
∆θは小さいとします。そして、rの長さを r方向に微小に ∆rだけ伸ばしたとします。そうすると、∆rと r∆θ

を辺とする長方形が作れて、その面積は r∆r∆θです。これが極座標での微小面積になります。実際に、これを領

域 Rが半径 aの円として、rを 0から aの範囲、θを 0から 2πの範囲として累次積分の形にすると

∫
R

dA =

∫ a

0

dr

∫ 2π

0

dθ r = 2π

∫ a

0

dr r = πa2

として、円の面積になります。このように、極座標にすると簡単に求まります。2次元極座標での微小面積 r∆r∆θ

は覚えておくと便利です。

　この積分もデカルト座標のときと同じような見方ができます。適当な半径 rでの円周と、そこから微小に伸ば

した半径 r +∆rでの円周を見ます。この 2つの円周の長さは異なっていますが、∆rが十分小さければほぼ同じ

になります。そうすると、rと r+∆rの間の帯を長方形として、その面積は 2πr∆rと与えられます。半径 aまで

の範囲で作られるこの帯を足せば半径 aの円になるので、∆r → 0での積分として

2π

∫ a

0

dr r = πa2

となり、円の面積になります。最初の帯の長さ 2πrを求めたのが θの積分に対応します。

　次に 3次元として球の体積を求めます。3次元デカルト座標 (x, y, z)とし、半径 aの球が中心が原点になるよう

に置いてあるとします。半径 aの球での球面上の位置は

x2 + y2 + z2 = a2

となっています。3重積分を z, y, xの順番で実行することにして

∫
R

dV =

∫ a

−a

dx

∫ g2(x)

g1(x)

dy

∫ h2(x,y)

h1(x,y)

dz

円のときと同じように考えれば、積分範囲は球面上の位置で与えられるので
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g1 = −
√
a2 − x2 , g2 =

√
a2 − x2

h1 = −
√
a2 − x2 − y2 , h2 =

√
a2 − x2 − y2

となります。これを確かめます。

　 xが与えられたとして、その xの位置で x軸に垂直な面で球を切ったとします。この切断面は yz平面における

円です。この円において yが与えられたとき、円周上の zは

z = ±
√

a2 − x2 − y2 = ±h(x, y)

となるので、この円の面積を求めるときの zの範囲は−h(x, y)から h(x, y)です。そして、この円における yの範

囲は

y = −
√
a2 − x2 = −g(x) , y =

√
a2 − x2 = g(x)

となっているので、円の面積は

∫ g(x)

−g(x)

dy

∫ h(x,y)

−h(x,y)

dz = 2

∫ g(x)

−g(x)

dy
√
a2 − x2 − y2

= 4
√

a2 − x2

∫ g(x)

0

dy

√
1− y2

a2 − x2

= 4
√
a2 − x2

∫ g(x)

0

dy

√
1− y2

a′2
(a′ =

√
a2 − x2)

= 4
√

a2 − x2a′
∫ π/2

0

dθ cos θ
√
1− sin2 θ (

y

a′
= sin θ , dy = a′ cos θdθ)

= 4(a2 − x2)
π

4

= π(a2 − x2)

この円と、同じようにして x+∆xで球を切断したときの円によって挟まれる部分の体積は、どちらの円も同じ面

積になっているほどに∆xが小さいなら、(a2 − x2)∆xです。これを x = −aから x = aの範囲で足し合わせれば

球を覆えるので、∆x → 0として積分で計算すると

π

∫ a

−a

dx(a2 − x2) = π
[
a2x− 1

3
x3

]a
−a

= π
[
a3 − 1

3
a3 + a3 − 1

3
a3
]a
−a

=
4

3
πa3

となり、球の体積になります。というわけで、領域 Rが半径 aの球での累次積分は

∫
R

dV =

∫ a

−a

dx

∫ g(x)

−g(x)

dy

∫ h(x,y)

−h(x,y)

dz

g(x) =
√
a2 − x2 , h(x, y) =

√
a2 − x2 − y2
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となります。

　 3次元極座標にして求めます。3次元になると感覚的に面倒になるだけですることは同じです。3次元極座標

(r, θ, ϕ)において、z軸と rの間の角度 θ (z軸から離れる方向を正)を微小に∆ϕ増加させます。そうすると、こ

の円弧の長さは r∆θです。次に、rを z軸のベクトル zと xy平面上のベクトルRの和として r = R+ zとしま

す。|R| = r sin θで x軸とRの間の角度が ϕなので、ϕを∆ϕだけ増加させたときの円弧は r sin θ∆ϕです。後は

r方向に長さを∆rだけ伸ばし、この 2つの円弧は直線と見なせるほどに小さいとすれば、∆r, r∆θ, r sin θ∆ϕを

辺とする直方体が作れます。これの体積は

r2 sin θ∆r∆θ∆ϕ

となり、これが 3次元での微小体積となります。これも覚えておくと便利です。

　球での極座標における積分範囲は

∫
R

dV =

∫ a

0

dr r2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ

θ, ϕの範囲をこのように取ると球の表面を覆えます。まず、微小体積を

r2 sin θ∆r∆θ∆ϕ = ∆r · r∆θ · r sin θ∆ϕ

と書きます。右辺の「・」は式の区切りを分かりやすくするために書いただけです。このときの r sin θは xy平面

にできる円の半径です。この円の円周は

∫ 2π

0

dϕ r sin θ = 2πr sin θ

と求まります。r∆θは θでの半径 r sin θの円と、θ +∆θでの半径 r sin(θ +∆θ)の円との間の微小な長さなので

2πr sin θ · r∆θは 2つの円による幅 r∆θの帯の面積です。よって、θを 0から πで積分すれば球の表面積になって

(半径 r sin θの円の円周を足し合わせるので 0 ≤ θ ≤ πで球になる)

∫ π

0

dθ 2πr sin θ · r = 4πr2

今の話から分かるように θの範囲を 0から 2πにすると 2重に表面を覆ってしまいます。その上、sinは 0から π

は正、πから 2πは負なので、積分は 0になってしまいます。

　後は、4πr2∆rは半径 rと半径 r +∆rの球の間の体積になることから、rを欲しい半径 aまで積分すれば

∫ a

0

dr 4πr2 =
4

3
πa3

となり、球の体積になります。

　このように円や球の積分は極座標にすることで簡単になります。注意としては、任意の領域 Rにおけるデカル

ト座標での積分は
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∫
R

dx

∫
R

dy ̸=
∫ a

0

dr r

∫ 2π

0

dθ

∫
R

dx

∫
R

dy

∫
R

dz ̸=
∫ a

0

dr r2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ

となっていることです。これは今までの話から当然で、右辺は円と球になるように積分範囲を取っているので、左

辺も領域 Rが円と球になっていないと等号にはなりません。なので、等号であるためには円と球の領域であるこ

とを示すために

∫
dx

∫
dy =

∫ a

0

dr r

∫ 2π

0

dθ (x2 + y2 ≤ a2)

∫
dx

∫
dy

∫
dz =

∫ a

0

dr r2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ (x2 + y2 + z2 ≤ a2)

のようにして、条件を加えて書く必要があります。

　もう 1つ等号になる場合があり、x, y, zと rの範囲が−∞から∞になっている場合です。この範囲ではどちら
の場合でも 3次元空間全体での積分になるために一致します。なので、全空間での積分のとき

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz =

∫ ∞

0

dr r2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ

となります。2次元でも同じです。力学では無限大の範囲を取ることはあまりないですが、量子力学ではよく出て

きます。

　ついでなので、3次元での全空間積分を簡単に見ておきます（2次元でも表記は同じ）。積分が 3次元であるこ

とを表す表記の仕方としては

∫
R

d3x =

∫ b

a

dx

∫ d

c

dy

∫ f

e

dz

Rは積分したい 3次元の領域です。もしくは面積や体積に対応させるために dS = dxdyや dV = dxdydz と書か

れます (累次積分の意味)。一応注意ですが、dx2 のように書いてあるのは x2 が積分変数であることを表します。

　全空間積分の場合では、定積分でも積分の範囲を書かずに (x = (x, y, z), |x| = |r| = r)

∫
d3x f(x) =

∫ ∞

0

d|x| |x|2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ f(|x|, θ, ϕ)

のように書かれます。|x|に上限があるときは積分のところにそれを書いて

∫ a

d3x f(x)

としたりします (下に書いたりもします)。

　全空間積分の性質として、被積分関数の変数 xを−xとしても積分の結果は変わらないというのがあります。全

空間と言っていますが、角度積分だけで示せるので |x|の範囲は関係ないです。これは 3次元極座標で言えば、ベ
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クトル xを球を描くように動かして積分するために、−xとしても結局同じ球を描くからです。具体的には、例

えば

∫ a

0

d|x||x|2
∫ π

0

dθ sin θ

∫ 2π

0

dϕep·x =

∫ a

0

d|x||x|2
∫ π

0

dθ sin θ

∫ 2π

0

dϕe−p·x

となります。実際に角度積分を実行すれば

∫ π

0

dθ sin θ

∫ 2π

0

dϕep·x =

∫ π

0

dθ sin θ

∫ 2π

0

dϕe|p||x| cos θ

= 2π

∫ −|p||x|

|p||x|
dz

sin θ

−|p||x| sin θ
ez (z = |p||x| cos θ)

= 2π
1

−|p||x|
(e−|p||x| − e|p||x|)

pと xの間の角度が θなのは、pを基準にしてそこから角度 θのところに xがいるようにするからです (pを z軸

と同じ扱いにする)。−xでは

∫ π

0

dθ sin θ

∫ 2π

0

dϕe−p·x = 2π

∫ −|p||x|

|p||x|
dz

sin θ

−|p||x| sin θ
e−z (z = |p||x| cos θ)

= 2π
1

|p||x|
(e|p||x| − e−|p||x|)

となるので、一致します。

　このように空間を覆う積分は

∫
d3x f(x) =

∫
d3x f(−x)

となっているために

f(−x) = −f(x)

となる奇関数では積分は 0になります。単純な例としては

∫ a

0

d|x||x|2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ (x · z) = 0

ということです。この場合での角度積分は

∫ π

0

dθ sin θ

∫ 2π

0

dϕ(x · z) =
∫ π

0

dθ sin θ

∫ 2π

0

dϕ|x||z| cos θ

θ積分で cos θが引っかかり
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∫ π

0

dθ sin θ cos θ =
sin2 π − sin2 0

2
= 0

から、0になっていることが確かめられます。また、原点から出ている任意のベクトルr = (r sin θ cosϕ, r sin θ sinϕ, r cos θ)

を全空間積分しても (r = |x|)

∫
d3x r =

∫ a

0

d|x||x|
∫ π

0

dθ sin θ

∫ 2π

0

dϕ(sin θ cosϕ, sin θ sinϕ, cos θ)

=

∫ a

0

d|x||x|
∫ π

0

dθ sin θ(0, 0, cos θ)

= (0, 0, 0)

となります。

　空間積分は現実的にはあろうがなかろうが数学的に n次元まで拡張することができます。例えば、相対論がか

かわる問題では、4次元での極座標を使って 4次元積分を実行するときがあります。
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