
万有引力によるポテンシャル

ポテンシャルエネルギー (位置エネルギー)の具体例として万有引力の場合を扱います。ここではポテンシャルと
言っていき、基本的に万有引力のポテンシャルエネルギーです。
具体的な万有引力による運動には触れずに、ポテンシャルエネルギーをだしているだけです。2変数のポテンシャ
ルエネルギーなので、ポテンシャルエネルギーの説明としては分かりづらくなっています。
ベクトル、偏微分は知っているとしています。

　ニュートンの万有引力の法則は、慣性系において位置 r1にいる質量m1の物体 A1と位置 r2にいる質量m2の
物体 A2 の間には

|f | = G
m1m2

|r2 − r1|2

という大きさの力がお互いを近づけるように働くと言っています（物体は質点のこと）。物体 A1 が物体 A2 に及
ぼしている力はベクトルによって

f12 = −Gm1m2
r2 − r1

|r2 − r1|3
(|f12| = |f |)

物体 A2 が物体 A1 に及ぼす力は作用・反作用の法則から

f21 = −f12 = Gm1m2
r2 − r1

|r2 − r1|3
= −Gm1m2

r1 − r2
|r2 − r1|3

と書けます。Gは重力定数で

G = 6.6732× 10−11 [N ·m2 · kg−2]

力 f12 は 2つの物体を結ぶ直線に沿っていて、マイナスがいるために引力です (物体 A2 を物体 A1 に近づける方
向に働いている)。マイナスで引力であることは、物体 A1 は原点 r1 = 0にいるとして

f12 = −Gm1m2
1

|r2|2
r2
|r2|

= −Gm1m2
1

|r2|2
e (e =

r2
|r2|

)

と書くとはっきりします。eは r2 方向の単位ベクトルで、−eの方向 (物体 A2 から物体 A1 の方向)に力が作用
しているので、A2にとっては引力になっています。f21は f12の反対方向なので A1から A2への方向を向いてい
て、A1 にとっては引力です。
　単語の問題ですが、万有引力 (universal gravitation)と重力 (gravity)は区別されています。万有引力は質量を
持った物体間に働く力を指し、重力は万有引力に遠心力のような他の力を考慮したものです。しかし、区別してい
る場合もあればしてない場合もあり、無駄な混乱を引き起こす区別になっています (一般相対性理論の話ではほぼ
区別していない)。
　また、地球の質量をMe、半径を Re として

|f | = G
mMe

R2
e

= mg

としたときの gが地球の重力加速度 g = 9.8[m · s−2]です。地球は質点ではないですが、質点とみなせることは下
の補足で示しています。
　「運動の法則」でのポテンシャルの話を万有引力として行います。まずは 1次元で見ていきます。2つの物体 (質
点)A1, A2 による系を考えます。x2 > x1 として、物体 A1, A2 の運動方程式は
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f12 = −f21 = −G
m1m2

(x2 − x1)2

から

m1
d2x1

dt2
= f21(x1, x2) , m2

d2x2

dt2
= f12(x1, x2)

f12には x1, x2がいるので連立方程式です。運動方程式を解くことは省いて、この系の力学的エネルギー保存の式
を求めます。
　物体 A1 では運動方程式を使って

d

dt
v21 = 2v1

dv1
dt

m1
d

dt
v21 = 2v1m1

dv1
dt

1

2
m1

d

dt
v21 = f21v1

同様に物体 A2 では

1

2
m2

d

dt
v22 = f12v2

二つを足して tで積分すれば

1

2
m1

∫
dt

d

dt
v21 +

1

2
m2

∫
dt

d

dt
v22 =

∫
dt(f21v1 + f12v2)

1

2
m1v

2
1 +

1

2
m2v

2
2 − T0 =

∫
dt(f21v1 + f12v2)

= −
∫

dt(v1 − v2)f12 (1)

T0は積分定数です。左辺は物体 A1, A2の運動エネルギーの和です。右辺では x1, x2による関数 U(x1, x2)の時間
微分は連鎖則から

dU(x1, x2)

dt
=

dx1

dt

∂U

∂x1
+

dx2

dt

∂U

∂x2
= v1

∂U

∂x1
+ v2

∂U

∂x2
(dU =

∂U

∂x1
dx1 +

∂U

∂x2
dx2)

となることを利用すれば

∂U

∂x1
= −f21 ,

∂U

∂x2
= −f12 (2)

とでき、力 f12 と U によるこのような関係があるとき、「運動の法則」でも触れたように f12 は保存力と呼ばれ
ます。このときの U は f12 からすぐに分かるように（最後に触れている位置の積分によるポテンシャルの定義も
参照）
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U(x1, x2) = −Gm1m2

x2 − x1

U の微分と f12 の対応をこのように選んでいるのは、運動方程式を

m1
d2x1

dt2
= − ∂U

∂x1
, m2

d2x2

dt2
= − ∂U

∂x2

と書けるようにするためです。
　というわけで

dU

dt
=

dx1

dt

∂U

∂x1
+

dx2

dt

∂U

∂x2
= −dx1

dt
f21 −

dx2

dt
f12 =

dx1

dt
f12 −

dx2

dt
f12

から

−
∫

dt(v1 − v2)f12 = −
∫

dt(
dx1

dt
− dx2

dt
)f12 = −

∫
dt

dU

dt
= −U(x1, x2) + U0

U は x1, x2 の関数なので最後の積分は U(x1, x2)になり、U0 は積分定数です。よって (1)は

1

2
m1v

2
1 +

1

2
m2v

2
2 − T0 = − U(x1, x2) + U0

1

2
m1v

2
1 +

1

2
m2v

2
2 −

Gm1m2

x2 − x1
= T0 + U0 (x2 > x1)

右辺は定数なので時間 tで微分すれば 0になることから、左辺の力学的エネルギーは時間と無関係な保存量です。
これによって、物体 A1, A2 の運動における任意の x1, x2, v1, v2, x

′
1, x

′
2, v

′
1, v

′
2 に対して

1

2
m1v

2
1 +

1

2
m2v

2
2 −

Gm1m2

x2 − x1
=

1

2
m1v

′2
1 +

1

2
m2v

′2
2 − Gm1m2

x′
2 − x′

1

となります。
　これが今の系での力学的エネルギー保存の式で、(2)を満たす U がいるので万有引力は保存力です（保存力であ
れば系の力学的エネルギーは保存される）。この結果で気を付ける点は、ポテンシャルの項が 2U とならずに U に
なることです。これから、ポテンシャルは物体A1, A2がそれぞれ持っているのでなく、共有していると言えます。
　また、ポテンシャルは

∂U

∂x1
= −f21 ,

∂U

∂x2
= −f12

から分かるように、任意の定数 C を含められ

U ′(x1, x2) = U(x1, x2) + C = −Gm1m2

x2 − x1
+ C

と書けます。積分で言えば

−
∫

dt
dU

dt
= −U(x1, x2) + C
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と出てくる C です。後でもっとはっきりした形を示します。定数 C が加わっても、力は変更されないので U ′ を
使っても運動方程式 (物体の運動)に影響しません。このようにポテンシャルには定数の任意性があり、その定数
をどのように選ぶかで形は変わります。U ′ = U − C から、C をポテンシャルの基準と言ったりします (適当な条
件で決めた C を基準にしたポテンシャル U ′)。また、力学的エネルギー保存の式にも定数は影響しません。理由
は簡単で、両辺に同じ定数が出てくるために、打ち消しあうからです。
　よく出てくるのが、x2 − x1 = ∞ (物体 A1, A2 が無限大に離れている) で U ′ = 0 になるとしたものです。
x2 − x1 = ∞で

U(x1, x2) = −Gm1m2

x2 − x1
⇒ 0

になるので、C = 0から U ′ = U になり余計な定数が出てこなくなります。この条件によって、x2 − x1 = ∞では
ポテンシャルは 0になることから、x2 − x1 = ∞での運動エネルギーを T とすれば、力学的エネルギー保存は

1

2
m1v

2
1 +

1

2
m2v

2
2 −

Gm1m2

x2 − x1
= T (x2 > x1)

と書けます。左辺は適当な x1, x2 での力学的エネルギー、右辺は x2 − x1 = ∞での力学的エネルギーです。
　物体 A1は速度 v1 = 0で原点 x1 = 0にいるとし、x2 = ∞において物体 A2の速度は v2 = 0でポテンシャルは
0という条件 (v2 = 0は物体 A1 から無限大に離れたところで物体 A2 の初速度が 0という初期条件)を入れれば

1

2
m2v

2
2 −

Gm1m2

x2
= 0

これは、原点に地球が固定されていると仮定して (もしくは地球の慣性系とする)、物体が地球に向かって落下し
ているときに使われます。この場合、m1 を地球の質量Me、地球の半径を Re として、物体は地球表面にいると
すれば x2 = Re なので

1

2
m2v

2
2 =

GMem2

Re

v2 =

√
2GMe

Re

となり、物体の地球の表面での速度が求まります。これは第二宇宙速度 (escape velocity)と呼ばれ、地球から離
脱するために必要な初速度です。大雑把には v2 = 11[km · s−1]です。より一般的には、重力を持った物体から離
脱するために必要な初速度を指します。
　また、地球から高さ h ≪ Re にいる質量mの物体のポテンシャルは重力加速度 gを使って

−GMem

Re + h
≃ −GMem

Re
(1− h

Re
) = −GMem

Re
+

GMem

R2
e

h = −GMem

Re
+mgh

第一項を適当な基準によって消せば、よく出てくるポテンシャルmghになります。
　時間からも条件について見ておきます。状況をはっきりさせるために、(1)に戻って不定積分を別の定義

∫ t

t0

dt′ f(t′) (
d

dt

∫ t

t0

dt′ f(t′) = f(t))

に書き換えます。t0 は適当な固定された時間で、tは動かせる変数とします。そうすると

1

2
m1

∫ t

t0

dt′
d

dt′
v21 +

1

2
m2

∫ t

t0

dt′
d

dt′
v22 =

1

2
m1v

2
1(t) +

1

2
m2v

2
2(t)−

1

2
m1v

2
1(t0)−

1

2
m2v

2
2(t0)
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ポテンシャルは

−
∫ t

t0

dt′
dU

dt′
= −U(t) + U(t0)

U は tそのものを変数に持っていませんが (陽に依存していない)、位置 x(t), x(t0)でのポテンシャルという意味
でこのように書いています。これらに対して、適当な時間 t0での条件を与えれば t0の項 (定数)を決められます。
条件は上の例で言えば、物体 A1は原点に固定して、t0のとき x2(t0) = ∞, v2(t0) = 0でポテンシャルは 0となり
ます (U(t0) = 0)。
　 3次元に移ります。ベクトル成分の添え字との混同をなくすために、力を

f(x,y) = f12(x,y) = −f21(x,y) = −GmM
x− y

|x− y|3

とし、物体 A1 の位置は y、質量はM、物体 A2 の位置は x、質量はmとします。物体 A1 の運動方程式は

M
dy

dt
= −f(x,y) (y = (y1, y2, y3) ,

dy

dt
= V = (V1, V2, V3))

物体 A2 の運動方程式は

m
dx

dt
= f(x,y) (x = (x1, x2, x3) ,

dx

dt
= v = (v1, v2, v3))

1次元と同じようにして

M
d

dt
|V |2 = M

d

dt
(V · V ) = 2MV · dV

dt
= −2V · f

m
d

dt
|v|2 = m

d

dt
(v · v) = 2mv · dv

dt
= 2v · f

二つを足して tで積分して

1

2
M |V |2 + 1

2
m|v|2 − T0 =

∫
dt (−V · f + v · f) (3)

左辺は運動エネルギーです。右辺は、今度も関数 U(x,y)の時間微分は

dU(x,y)

dt
=

dx1

dt

∂U

∂x1
+

dx2

dt

∂U

∂x2
+

dx3

dt

∂U

∂x3
+

dy1
dt

∂U

∂y1
+

dy2
dt

∂U

∂y2
+

dy3
dt

∂U

∂y3

= − dx1

dt
f1 −

dx2

dt
f2 −

dx3

dt
f3 +

dy1
dt

f1 +
dy2
dt

f2 +
dy3
dt

f3

= − v · f + V · f

となっていることを利用します。これから

f = −∇xU = (− ∂U

∂x1
,− ∂U

∂x2
,− ∂U

∂x3
) , f = ∇yU = (

∂U

∂y1
,
∂U

∂y2
,
∂U

∂y3
)
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なので、U は

U(x,y) = −GmM
1

|x− y|

と求まります。実際に

− ∂U

∂x1
= GmM

∂

∂x1

1

|x− y|
= GmM

∂

∂x1

1√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

= − 1

2
GmM

2(x1 − y1)

((x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2)3/2

= −GmM
x1 − y1
|x− y|3

= f1 (f = (f1, f2, f3))

他も同様なので

f(x,y) = −∇xU = (− ∂U

∂x1
,− ∂U

∂x2
,− ∂U

∂x3
) = (−GmM

x1 − y1
|x− y|3

,−GmM
x2 − y2
|x− y|3

,−GmM
x3 − y3
|x− y|3

)

= −GmM
x− y

|x− y|3

yでも同様で

∂U

∂y1
= −GmM

∂

∂y1

1

|x− y|
= −GmM

∂

∂y1

1√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

=
1

2
GmM

−2(x1 − y1)

((x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2)3/2

= −GmM
x1 − y1
|x− y|3

= f1

となります。U を使えば運動方程式は

M
dy

dt
= −∇yU(x,y) , m

dx

dt
= −∇xU(x,y)

と書けます。
　このように求めた U(x,y)から (3)の右辺は

−
∫

dt (V · f − v · f) = −
∫

dt
dU(x,y)

dt
= −U(x,y) + U0 (4)

よって、(3)は力学的エネルギー保存の式
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1

2
M |V |2 + 1

2
m|v|2 −GmM

1

|x− y|
= T0 + U0

となり、3次元での万有引力のポテンシャルは

U(x,y) = −GmM
1

|x− y|
(f(x,y) = −∇xU(x,y))

となっています。
　ここでは万有引力を使ってきましたが、一般的な性質になります。つまり、ある力 F (x)に対して

F (x) = −∇U(x)

となる関数 U(x)が存在していれば、力学的エネルギーの保存が成立します。このときの F (x)は保存力と呼ばれ
ます。また、∇の性質

∇×∇A = 0

から

∇× F (x) = 0

であれば、F (x)は保存力と言えます。
　この性質は別の見方をすれば、(4)のように、時間 t0 から t1 での積分によってポテンシャル U(x)が

∫ t1

t0

dt
dU

dt
= U(t1)− U(t0)

となっていることです。ここでも、ポテンシャルは正確には時間を変数に持ちませんが、時間 t1, t0 での位置
x(t1),x(t0)でのポテンシャルとして書いています。この結果は、積分の両端での位置だけで積分結果が決まること
を表します。このことをはっきりさせるために、時間の積分を物体の位置の積分に書き換えて (dx = (dx1, dx2, dx3))

U(t1)− U(t0) =

∫ t1

t0

dt
dU

dt
=

∫ t1

t0

dt
dx

dt
· ∇U =

∫ a

b

dx · ∇U (x(t), dx =
dx

dt
dt) (5)

積分の両端は時間 t1, t2 での位置で与えられていて、a = x(t1), b = x(t0)と表記しています。xは運動方程式に
従う軌道 (曲線)で、最右辺はその軌道に沿った積分です (ポテンシャルは物体の運動に対して与えられているか
ら)。U は

U(t1) = U(a) , U(t0) = U(b)

と表記しているので

∫ a

b

dx · ∇U = U(a)− U(b)

となります。もしくは、素直に U(x)の変化 dU が

7



dU =
∂U

∂x1
dx1 +

∂U

∂x2
dx2 +

∂U

∂x3
dx3 = dx · ∇U

であることを使っても求められます。この性質から、力 F = −∇U の積分結果が積分の両端にのみ依存している
とき、F は保存力と定義することが多いです。これを線積分で言えば、両端は同じ位置 a, bで、途中の経路が異
なっている経路 C,C ′ に対して

∫
C

dr · F =

∫
C′

dr · F =

∫ a

b

dx · F = −(U(a)− U(b))

となっているなら (dr は経路上の微小な変位)、F は保存力になるということです。これは F = −∇U の積分形
で、ポテンシャルの定義をこの形で与えることが多いです。力からポテンシャルを求めるにはこの積分を実行しま
す。例えば 1次元として、点 xでのポテンシャルと言ったときは

−
∫ x

x0

dx′ F (x′) = U(x)− U(x0)

のように求めます。x0 は任意の基準点で、U(x0)は定数でポテンシャルの基準です。
　また、dx · F の積分は経路に沿った力 F の仕事 (work)と定義されます。これを少し見ておきます。F を保存
力でないとします。運動方程式の変形は (5)と同じようにして

m
d2x

dt2
= F

m
dv

dt
· v = F · v

d

dt
(
1

2
m|v|2) = F · v (|v|2 = v · v)

1

2
m|v|2 − 1

2
m|v0|2 =

∫ t1

t0

dtF · dx
dt

=

∫ a

b

dx · F

時間 t0 での速度を v0、a = x(t1), b = x(t0)としています。右辺は物体の微小な変位 dxと F の内積の積分で、
積分は物体の軌道上の線積分です。この右辺が仕事と定義され、位置 bから aまでの経路上で物体に作用する力
F による仕事と言われます。なので、仕事は経路に依存する量です。経路に依存していないときに F は保存力と
なり、仕事の符号を反転させるとポテンシャルになります。そして、仕事は時間 t1と t0での運動エネルギーの差
に対応し、work-energy principleと呼ばれます。

・補足
　半径 aの球は大きさを持つので質点ではないですが、半径 aの外側の質点に作用する万有引力は球の全質量を
持つ質点が球の中心にいるとした場合と同じになります。これを示します。
　全質量M は、密度 ρ(x)を使えば、半径 aの球の領域 V における 3次元積分として

M =

∫
V

d3x ρ(x)

と与えられます。これは、球内の微小な 3次元領域∆V の質量 ρ(x)∆V を全て足し合わせれば全質量になると言っ
ているだけです。∆V は極座標 (r, θ, ϕ)では (r = x)、「円と球の積分」で示しているように

∆V = r2dr sin θdθdϕ ,

∫ a

0

dr r2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ =
4

3
πa3
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この微小な領域は十分質点と見なせるとし、その位置を rとして、球の外側の位置 r′ (|r′| > |r|)にいる質量mの
質点に作用する万有引力は

f = −Gρ∆V m
r′ − r

|r′ − r|3

なので、微小な領域のポテンシャルは

∆U = −Gρ∆V m
1

|r′ − r|

これを球全体で積分すれば、球のポテンシャルになります。ここで、球を構成しているので密度は極端な分布はし
ていないとして、r = |r|にのみ依存するとします（十分薄い球殻内で密度が一定)。そうすると

U = −Gm

∫ a

0

dr r2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ
ρ(r)

|r′ − r|

= − 2πGm

∫ a

0

dr r2ρ(r)

∫ π

0

dθ sin θ
1√

r′2 + r2 − 2r′r cos θ
(r′ = |r′|)

θ積分は

s = r′2 + r2 − 2r′r cos θ , ds = 2r′r sin θ

s± = r′2 + r2 ± 2r′r = (r′ ± r)2

として

U = − 2πGm

∫ a

0

dr r2
ρ(r)

2r′r

∫ s+

s−

ds
1√
s

= − 2πGm

∫ a

0

dr r2
ρ(r)

r′r
(
√
s+ −√

s−)

= − 2πGm

∫ a

0

dr r2
ρ(r)

r′r
(r′ + r − |r′ − r|)

r′ > rなので

U = −2πGm

∫ a

0

dr r2
ρ(r)

r′r
(r′ + r − r′ + r) = −Gm

r′

∫ a

0

dr 4πr2ρ(r)

最右辺は

M =

∫
V

d3x ρ(r) =

∫ a

0

dr r2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ ρ(r) =

∫ a

0

dr 4πr2ρ(r)

と一致するので
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U(r′) = −GmM

r′

力は

F (r′) = −GmM

r′2

となり、質量M の質点による万有引力になります。というわけで、球の外側の質点に作用する万有引力は、球の
中心に全質量が集まっているとした万有引力と同じです
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