
角運動量演算子

最初に角運動量演算子の一般的な話をして、後半で軌道角運動量の話を簡単にしています。
ブラケットで行いますが、波動関数でも同じです。
煩わしいので演算子のハットを外して書いています。基本的には、大文字のローマ文字は演算子、それ以外は通常
の数としています (位置演算子と運動量演算子は小文字ですが x,pとし、C±

j,m は大文字ですが通常の数にしてい
ます)。

　角運動量の交換関係から固有状態と固有値を求めていきますが、初めて量子力学をやる人は斜め読みして、とっ
とと結果と軌道角運動量のところに行っていいです。というより、角運動量の話は読み物として触れる程度にして
(話だけなら分かりやすい)、必要になってからちゃんと勉強する方が効率的です。特に物理向けの群論の話を少し
勉強してから改めて触れたほうが見通しがいいですし、実用上も群論の視点からの方がいい気がします。
　ここでは群論の話には触れずに、交換関係から導けるものとして扱っていきます。まず、エルミート演算子
J1, J2, J3 を用意します。エルミート演算子なので、

J1 = J†
1 , J2 = J†

2 , J3 = J†
3

となっています。そして、この 3個の演算子だけで成立している交換関係として

[J1, J2] = iℏJ3 , [J3, J1] = iℏJ2 , [J2, J3] = iℏJ1

を満たすとします。これらはレヴィ・チビタ記号 ϵabc (小文字のローマ文字の添え字は 1, 2, 3)を使えば

[Ja, Jb] = iℏϵabcJc

とまとめて書けます。レヴィ・チビタ記号は ϵ123 = +1として、1, 2, 3の偶置換ではプラス、奇置換ではマイナス
になります。例えば

ϵ312 = ϵ231 = +1 , ϵ132 = ϵ213 = −1

ということです。交換関係の記号を使わないなら、3次元ベクトルの外積によって

J × J = iℏJ (J = (J1, J2, J3))

とも書けます。
　というわけで、交換関係を満たすエルミート演算子 J1, J2, J3について見ていきます。まず、J1, J2, J3は 3成分
のベクトルに対応しているように見えるので、ベクトルの大きさのように

J2 = J2
1 + J2

2 + J2
3

という演算子 J2 を作ります。J2 と J1 との交換関係は

[J2, J1] = [J2
1 + J2

2 + J2
3 , J1]

= [J2
1 , J1] + [J2

2 , J1] + [J2
3 , J1]

= J2[J2, J1] + [J2, J1]J2 + J3[J3, J1] + [J3, J1]J3

= − iℏJ2J3 − iℏJ3J2 + iℏJ3J2 + iℏJ2J3

= 0
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途中で

[A,B ± C] = [A,B]± [A,C] , [A,BC] = B[A,C] + [A,B]C

となっていることを使っています。J2, J3 でも同じなので

[J2, J1] = 0 , [J2, J2] = 0 , [J2, J3] = 0

となり、J2 は Ja と交換するのが分かります。交換することから、J2 と Ja は同時固有状態を持つことが分かり
ます。ただし注意があって、例えば Ja を J3 と選んで

[J2, J3] = 0

としたとき、J2と J3の同時固有状態 |ϕ⟩は存在しますが、J2と J1,2の同時固有状態は一般的には存在しません。
理由は簡単で J3と J1,2は交換しないからです。交換しないなら J3と J1,2の同時固有状態は存在しないので、J2

と J1,2の同時固有状態も存在しないことになります。こういった理由から、ここからは J3が J2と交換するとし
て、J3を特別扱いしていきます (J3を選ぶ理由は慣習だからというだけです)。ここから同時固有状態と言った時
は、J2 と J3 の同時固有状態をさします。
　同時固有状態を |ϕ⟩として、これは規格化 ⟨ϕ|ϕ⟩ = 1されてます (エルミート演算子の固有状態は正規直交関係
を持つ )。ここから同時固有状態 |ϕ⟩に対する

J2|ϕ⟩ = λ|ϕ⟩ , J3|ϕ⟩ = ρ|ϕ⟩

これらの固有値 λ, ρを求めます。まず、簡単な次元解析をします。Jaの交換関係を見ると、JaJbと ℏJcの次元が
合っている必要があるので、Ja は ℏと同じ次元を持っています。このことから λ, ρを

J2|ϕ⟩ = ℏ2λ|ϕ⟩ , J3|ϕ⟩ = ℏρ|ϕ⟩

と与えなおして、λ, ρは無次元量とします。
　内積の性質から固有値に制限が入ります。Ja がエルミート演算子なので、その固有値は実数であることを使い
ます。固有値が実数なので、エルミート演算子 Aによる ⟨ψ|A|ψ⟩(期待値)は、エルミート演算子の定義から

⟨ψ|A|ψ⟩ = ⟨ψ|A|ψ⟩∗

となり、実数です。A2 では、同じ状態のブラケットの内積 (ノルム)の定義から

⟨ψ|A2|ψ⟩ = ⟨ψ|AA|ψ⟩ = ⟨ψ|A†A|ψ⟩ = (A|ψ⟩)†A|ψ⟩ = ⟨ψ′|ψ′⟩ ≥ 0 (A|ψ⟩ = |ψ′⟩)

となり、0か正の値を取ります (ただしノルムが 0になるのは |ψ′⟩が 0のとき)。
　 J2|ϕ⟩に左から ⟨ϕ|をかければ、J3 がエルミート演算子なので
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⟨ϕ|J2|ϕ⟩ = ⟨ϕ|(J2
1 + J2

2 + J2
3 )|ϕ⟩

= ⟨ϕ|(J2
1 + J2

2 )|ϕ⟩+ ⟨ϕ|J2
3 |ϕ⟩

= ⟨ϕ|(J2
1 + J2

2 )|ϕ⟩+ ⟨ϕ|J3J3|ϕ⟩

= ⟨ϕ|(J2
1 + J2

2 )|ϕ⟩+ ⟨ϕ|J†
3J3|ϕ⟩

= ⟨ϕ|(J2
1 + J2

2 )|ϕ⟩+ ⟨ϕ|J†
3J3|ϕ⟩ (⟨ϕ|J†

3 = (J3|ϕ⟩)† = (ρ|ϕ⟩)† = ⟨ϕ|ρ∗ = ⟨ϕ|ρ)

= ⟨ϕ|(J2
1 + J2

2 )|ϕ⟩+ ⟨ϕ|ρ2|ϕ⟩

= ⟨ϕ|(J2
1 + J2

2 )|ϕ⟩+ ρ2⟨ϕ|ϕ⟩

λ = ⟨ϕ|(J2
1 + J2

2 )|ϕ⟩+ ρ2 ≥ 0

第一項は J2
1 の ⟨ϕ|J2

1 |ϕ⟩と J2
2 の ⟨ϕ|J2

2 |ϕ⟩の和なので (|ϕ⟩は J1,2の固有状態ではない)、0か正の値です (J1, J2も
エルミート演算子)。よって、右辺は 0か正の値と ρ2 の和になっているので

λ ≥ ρ2

と分かり、同時に λが 0以上であることも分かります。
　ここからの方針は、固有値が変化した同時固有状態を作っていき、それがどの範囲内で可能なのかを調べると
いうものです。なので、必要なのは固有値が変化した同時固有状態です。
　ここで、新しい演算子として

J+ = (J1 + iJ2) , J− = (J1 − iJ2)

を定義します。J1, J2 はエルミート演算子なので、J
†
+ と J†

− は

J†
+ = J− , J†

− = J+

となります。J± と J3 による交換関係は

[J±, J3] = [J1 ± iJ2, J3] = [J1, J3]± i[J2, J3]

= − iℏJ2 ± i(iℏJ1)

= − iℏJ2 ∓ ℏJ1

= ∓ ℏ(J1 ± iJ2)

= ∓ ℏJ±

から

[J+, J3] = −ℏJ+ , [J−, J3] = ℏJ−

J2 とでは
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[J±,J
2] = [J±, J

2
1 + J2

2 + J2
3 ] = [J±, J

2
1 ] + [J±, J

2
2 ] + [J±, J

2
3 ]

= J1[J±, J1] + [J±, J1]J1 + J2[J±, J2] + [J±, J2]J2 + J3[J±, J3] + [J±, J3]J3

= J1[±iJ2, J1] + [±iJ2, J1]J1 + J2[J1, J2] + [J1, J2]J2 ∓ ℏJ3J± ∓ ℏJ±J3

= ± iJ1[J2, J1]± i[J2, J1]J1 + J2[J1, J2] + [J1, J2]J2 ∓ ℏJ3J± ∓ ℏJ±J3

= ℏ(±J1J3 ± J3J1 + iJ2J3 + iJ3J2 ∓ J3(J1 ± iJ2)∓ (J1 ± iJ2)J3)

= ℏ(±J1J3 ± J3J1 + iJ2J3 + iJ3J2 ∓ J3J1 − iJ3J2 ∓ J1J3 − iJ2J3)

= 0

となるので

[J±,J
2] = 0

となり、交換します。
　 J3J+ を |ϕ⟩に作用させると交換関係と J3|ϕ⟩ = ρ|ϕ⟩から

J3J+|ϕ⟩ = ([J3, J+] + J+J3)|ϕ⟩ = (ℏJ+ + J+J3)|ϕ⟩ = (ℏJ+ + J+ℏρ)|ϕ⟩ = ℏ(ρ+ 1)J+|ϕ⟩

同様に J3J− では

J3J−|ϕ⟩ = ([J3, J−] + J−J3)|ϕ⟩ = (−ℏJ− + J−J3)|ϕ⟩ = (−ℏJ− + J−ℏρ)|ϕ⟩ = ℏ(ρ− 1)J−|ϕ⟩

これらは、J+|ϕ⟩ = |ϕ+⟩、J−|ϕ⟩ = |ϕ−⟩とすれば

J3|ϕ+⟩ = ℏ(ρ+ 1)|ϕ+⟩ , J3|ϕ−⟩ = ℏ(ρ− 1)|ϕ−⟩

なので、|ϕ±⟩は J3 の固有状態で固有値が ℏ(ρ± 1)になっています。そうすると

J3|ϕ⟩ = ℏρ|ϕ⟩

と比べることで、|ϕ±⟩は |ϕ⟩から ±ℏされた固有値を持っていることが分かります。これを明確に書くために |ϕ⟩
と |ϕ±⟩を

|ϕ; ρ⟩ , |ϕ; ρ± 1⟩

と書くことにします。そうすれば

J3|ϕ; ρ⟩ = ℏρ|ϕ; ρ⟩

J3|ϕ; ρ± 1⟩ = ℏ(ρ± 1)|ϕ; ρ± 1⟩

J+|ϕ; ρ⟩ = |ϕ; ρ+ 1⟩ , J−|ϕ; ρ⟩ = |ϕ; ρ− 1⟩ (1)

と書けて、J3 の固有値がどうなっているのかが見やすくなります。このように J+ は J3 の固有値を 1増加させ、
J− は 1減少させる演算子です (正確には ℏの増減)。このため 2つを合わせて昇降演算子 (ladder operator)と呼
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び、それぞれを上昇演算子、下降演算子と呼びます (昇演算子、降演算子とも言います)。これだけでは単にそう
いう演算子が作れただけなので、さらに見ていきます。
　 |ϕ; ρ± 1⟩は J2 と J3 の同時固有状態になっています。これを見るのは簡単で J2 と J± が交換することから

J2|ϕ; ρ± 1⟩ = J2J±|ϕ; ρ⟩ = J±J
2|ϕ; ρ⟩ = ℏλJ±|ϕ; ρ⟩ = ℏλ|ϕ; ρ± 1⟩

となるからです。同時に、J2 の固有値は |ϕ; ρ⟩と |ϕ; ρ± 1⟩で変わっていないことも分かります。このことから、
J± は J3 の固有値にしか影響しなく、|ϕ; ρ± 1⟩と書いて問題ないことも確かめられます。
　 J±を複数回作用させてみます。ρ± 1を ρ′と思えば、|ϕ; ρ± 1⟩ = |ϕ; ρ′⟩は J3の固有状態のままなので、|ϕ; ρ′⟩
に J±を作用させると |ϕ; ρ′ ± 1⟩になり、固有値も ℏ(ρ′ ± 1)として出てきます。実際に、例えば J+を 2回作用さ
せた場合では

J3J
2
+|ϕ; ρ⟩ = ([J3, J+] + J+J3)J+|ϕ; ρ⟩ = (ℏJ+ + J+J3)J+|ϕ; ρ⟩

= (ℏJ+J+ + J+J3J+)|ϕ; ρ⟩

= (ℏJ+J+ + J+([J3, J+] + J+J3)|ϕ; ρ⟩

= (ℏJ+J+ + ℏJ+J+ + J+J+J3)|ϕ; ρ⟩

= ℏ(2 + ρ)J2
+|ϕ; ρ⟩

となるので、2回作用させれば固有値が 2ℏ増えることが確かめられます。そして、この +2の出方から予想でき
るように、n回作用させれば n回交換関係が出てきて、それによって +nされることが分かります。なので、J+
を n回作用させれば固有値は nℏだけ増えます。というわけで、J± を n回作用させると

J3J
n
±|ϕ; ρ⟩ = J3J

n−1
± |ϕ; ρ± 1⟩ = · · · = J3|ϕ; ρ± n⟩ = ℏ(ρ± n)|ϕ; ρ± n⟩

となり、|ϕ; ρ± n⟩は J3 の固有状態です。
　これによって、J2 の固有値が同じで、J3 の固有値が変化した同時固有状態 |ϕ; ρ± n⟩が作れました (J± と J2

は交換するので何回作用してても J2 の固有状態になる)。これで同時固有状態が手に入ったので、次は ρ± nが
どんな値が取れるのかです。
　すでに λ ≥ ρ2 の制限があることが分かっているので、ρには J2 の固有値 λによる制限があります。この制限
のために、J±を作用させる回数には制限があり、ρ± nには上限と下限があります。ρがマイナスの値を持てるな
ら、λ = ρ2 が ρの最大値と最小値になっているはずなので

−
√
λ ≤ ρ ≤

√
λ

これから、ρの上限を ρmax、下限を ρmin とすれば

ρmax = −ρmin

という関係を持ちます。このような関係を持つ ρmax が分かれば、λが何なのか分かります。
　また、

|ϕ; ρ+ 1⟩ = J+|ϕ; ρ⟩

⟨ϕ; ρ+ 1|ϕ; ρ+ 1⟩ = ⟨ϕ; ρ|J†
+J+|ϕ; ρ⟩ (2)

これの左辺は同じ状態の内積なので
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⟨ϕ; ρ+ 1|ϕ; ρ+ 1⟩ ≥ 0 , ⟨ϕ; ρ|J†
+J+|ϕ; ρ⟩ ≥ 0

が言えます。これに、ρの上限と下限が決められたためにそれを超えた値は J3 の固有値として存在しないことを
踏まえれば、J+|ϕ; ρ⟩ = 0が ρの上限を超えた状態と考えられます。下限も同様にすることで、ρmax, ρminの状態
に対して

J+|ϕ; ρmax⟩ = 0 (3a)

J−|ϕ; ρmin⟩ = 0 (3b)

となると考えられます (ρmax, ρmin を超えた J3 の固有値は存在しない。J3J+|ϕ; ρmax⟩ = J3|ϕ; ρmax+1⟩ = 0)。
　ちなみに、(3a)と (3b)から ρmax = −ρmin であることを確かめられます。J∓J± を計算してみると

J∓J± = (J1 ∓ iJ2)(J1 ± iJ2) = J2
1 + J2

2 ± iJ1J2 ∓ iJ2J1

= J2 − J2
3 ± i(J1J2 − J2J1)

= J2 − J2
3 ± i[J1, J2]

= J2 − J2
3 ∓ ℏJ3 (4)

と書けます。(3a)に J− を作用させてこれを使えば

0 = J−J+|ϕ; ρmax⟩

= (J2 − J2
3 − ℏJ3)|ϕ; ρmax⟩

= (λℏ2 − ℏ2ρ2max − ℏ2ρmax)|ϕ; ρmax⟩

となるので

0 = λℏ2 − ℏ2ρ2max − ℏ2ρmax

λ = ρmax(ρmax + 1) (5)

同様に

0 = J+J−|ϕ; ρmin⟩

= (J2 − J2
3 + ℏJ3)|ϕ; ρmax⟩

= (λℏ2 − ℏ2ρ2min + ℏ2ρmin)|ϕ; ρmax⟩

から

0 = λℏ2 − ℏ2ρ2min + ℏ2ρmin

λ = ρmin(ρmin − 1)
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2つを合わせることで

ρmax(ρmax + 1) = ρmin(ρmin − 1) ⇒ ρmax = −ρmin

となります。
　このように J3の固有値には上限と下限があり、ρmax = −ρminという関係を持っています。そして、J−によっ
て ρは −1ずつ減っていきます。なので、ρmax の状態に J− を作用させていくことで ρmin = −ρmax にたどり着
かなくてはいけないです。これを満たすためには

ρmax − n = − ρmax

n = 2ρmax

とならなければいけないので (nは整数 )、ρmax は整数か半整数 (1/2, 3/2, . . . .)である必要があります。
　よって、ρmax を整数か半整数である j と書くことにすれば、λは (5)から、j で指定される

λ = j(j + 1)

という値になります。これで J2 の固有値が求まりました。残っているのは ρです。
　これまでの話から、J2 の固有値が同じになる同時固有状態として |ϕ; ρ ± n⟩ があり、それの上限と下限が
|ϕ; j⟩, |ϕ;−j⟩となっています。このため、j を適当に与えて J2 の固有状態を

J2|ϕ; j; ρ⟩ = ℏ2j(j + 1)|ϕ; j; ρ⟩

と書いたとき、

J2|ϕ; j; j⟩ = ℏ2j(j + 1)|ϕ; j; j⟩, J2|ϕ; j; j − 1⟩ = ℏ2j(j + 1)|ϕ; j; j − 1⟩, · · · ,J2|ϕ; j;−j⟩ = ℏ2j(j + 1)|ϕ; j;−j⟩

となる固有状態も J3 の固有状態なので、J3 の ρは

−j,−j + 1, . . . , j − 1, j

の値のどれかになります。
　まとめると、J2 と J3 の固有状態と固有値を

J2|ϕ⟩ = ℏ2j(j + 1)|ϕ⟩

J3|ϕ⟩ = ℏm|ϕ⟩

と書くことにすれば、同時固有状態であるためには、j は 0以上の整数か半整数

j = 0,
1

2
, 1,

3

2
, 2, . . .

の中から選ぶことになり、mはその j による +j を上限、−j を下限とする

m = −j,−j + 1, . . . , j − 1, j
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のどれかの値です (mは−jから jまでの 2j+1個の値が取れる)。これは jによって指定される固有状態 |ϕ; j⟩に
は 2j + 1個の同時固有状態があることを言っています。なので、固有状態 |ϕ⟩を |j,m⟩と書くことにして

J2|j,m⟩ = ℏ2j(j + 1)|j,m⟩

J3|j,m⟩ = ℏm|j,m⟩

とすると分かりやすいです。例えば、j = 2という状態はmによって区別されて

|2,−2⟩, |2,−1⟩, |2, 0⟩, |2,+1⟩, |2,+2⟩

という 5個の同時固有状態があることになります (j = 2の状態が 5個ある)。
　これで固有状態が出尽くしていることは群論の知識が必要になるのでここでは触れません。簡単に言えば、リー
代数 su(2)の既約表現は整数か半整数の jによって最大の固有値を持つ固有ベクトルを指定することで与えられる
からです。
　固有状態と固有値が決まったので、規格化を行います。|ϕ⟩は規格化されているとしたので、|j,m⟩も規格化さ
れています。規格化は離散的な状態の区別をm,nでつければ

⟨ψm|ψn⟩ = δmn

であり、今は j,mで状態が指定されることから規格化を

⟨j,m|j′,m′⟩ = δjj′δmm′

と与えます。
　このように規格化すると、上で与えた J± の状態への作用の仕方 (1)を今の場合に書き直して

J+|j,m⟩ = |j,m+ 1⟩ , J−|j,m⟩ = |j,m− 1⟩

としただけでは規格化がされていません。これは (2)を見ると分かって

⟨j,m+ 1|j,m+ 1⟩ = ⟨j,m|J†
+J+|j,m⟩

において右辺を計算してみると、J†
+ = J− から

⟨j,m|J†
+J+|j,m⟩ = ⟨j,m|J−J+|j,m⟩

= ⟨j,m|(J2 − J2
3 − ℏJ3)|j,m⟩

= ⟨j,m|ℏ2(j(j + 1)−m2 −m)|j,m⟩

= ℏ2(j(j + 1)−m2 −m)⟨j,m|j,m⟩

となるので、⟨j,m|j,m⟩ = ⟨j,m+ 1|j,m+ 1⟩ = 1になっていません。というわけで、複素数 C+ を使って

J+|j,m⟩ = C+|j,m+ 1⟩

と定義しなおして
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|C+|2⟨j,m+ 1|j,m+ 1⟩ = ⟨j,m|J†
+J+|j,m⟩

|C+|2 = ℏ2(j(j + 1)−m(m+ 1)) (6)

とすることで、規格化 ⟨j,m|j,m⟩ = ⟨j,m+ 1|j,m+ 1⟩ = 1がされます。|j,m− 1⟩でも同様で

⟨j,m− 1|j,m− 1⟩ = ⟨j,m|J†
−J−|j,m⟩ = ⟨j,m|J+J−|j,m⟩

J−|j,m⟩ = C−|j,m− 1⟩

J+J− = J2 − J2
3 + ℏJ3

から

|C−|2 = ℏ2(j(j + 1)−m(m− 1)) (7)

となります。上での話はこの変更による影響を全く受けなくて、J± の部分が (規格化をしただけだから)

J+|j,m⟩ = C+
j,m|j,m+ 1⟩ , J−|j,m⟩ = C−

j,m|j,m− 1⟩

C±
j,m = ℏ

√
j(j + 1)−m(m± 1) (8)

となるだけです。C±は j,mに依存しているので、C±
j,mとしています。ここでは C±

j,mは正の値になるように取っ
ています (下の補足参照)。また、C±

j,m は

C+
j,j = ℏ

√
j(j + 1)− j(j + 1) = 0 , C−

j,−j = ℏ
√
j(j + 1)− j(j + 1) = 0

となっているので

J+|j, j⟩ = C+
j,j |j, j + 1⟩ = 0 , J−|j,−j⟩ = C−

j,−j |j,−j − 1⟩ = 0

このように固有値の制限 (3a),(3b)と同じになります。
　というわけで、結果をまとめると、交換関係

[J1, J2] = iℏJ3 , [J3, J1] = iℏJ2 , [J2, J3] = iℏJ1

に従うエルミート演算子 J1, J2, J3 において、J2 = J2
1 + J2

2 + J2
3 と J3 が交換するとしたとき、J2 と J3 の同時

固有状態と固有値は

J2|j,m⟩ = ℏ2j(j + 1)|j,m⟩ , J3|j,m⟩ = ℏm|j,m⟩

⟨j,m|j′,m′⟩ = δjj′δmm′

j = 0,
1

2
, 1,

3

2
, 2, . . . , m = −j,−j + 1, . . . , j − 1, j

と与えられます。同時固有状態はmによって区別される 2j+1個があります。また、固有状態 |j,m⟩は J± = J1±iJ2
という演算子によって
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J+|j,m⟩ = C+
j,m|j,m+ 1⟩ , J−|j,m⟩ = C−

j,m|j,m− 1⟩ C±
j,m = ℏ

√
j(j + 1)−m(m± 1)

と変化させることができます。また、これから

⟨j,m|J+|j,m⟩ = ⟨j,m|J1|j,m⟩+ i⟨j,m|J2|j,m⟩ = C+
j,m⟨j,m|j,m+ 1⟩ = 0

⟨j,m|J−|j,m⟩ = ⟨j,m|J1|j,m⟩ − i⟨j,m|J2|j,m⟩ = C−
j,m⟨j,m|j,m− 1⟩ = 0

なので

⟨j,m|J1|j,m⟩ = 0 , ⟨j,m|J2|j,m⟩ = 0

となっているのが分かります。
　ここで具体的な話をしておきます。古典力学での角運動量は位置ベクトル x = (x, y, z) と運動量ベクトル
p = (px, py, pz)による外積によって

L = x× p

と定義されています。これを演算子化すれば

L̂ = x̂× p̂ (x̂ = x , p̂ = −iℏ ∂

∂x
= −iℏ∇)

となります (これ以降またハットを省略します)。量子力学では、これを軌道角運動量演算子と呼びます。Lの交
換関係は

Lx = ypz − zpy , Ly = zpx − xpz , Lz = xpy − ypx

から

[Lx, Ly] = [ypz − zpy, zpx − xpz]

= [ypz, zpx − xpz]− [zpy, zpx − xpz]

= [ypz, zpx] + [ypz, zpx]− [ypz, xpz]− [zpy, zpx] + [zpy, xpz]

x,pの交換関係は

[x, px] = [y, py] = [z, pz] = iℏ (9)

だけが 0でなく、他のは全て 0です。なので、

[A,BC] = B[A,C] + [A,B]C

を使って、交換関係が 0にならない組み合わせだけを取り出せばよくて
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[Lx, Ly] = [ypz, zpx] + [ypz, zpx]− [ypz, xpz]− [zpy, zpx] + [zpy, xpz]

= [ypz, zpx] + [zpy, xpz]

= y[pz, zpx] + [y, zpx]pz + z[py, xpz] + [z, xpz]py

= y[pz, z]px + x[z, pz]py

= − iℏypx + iℏxpy

= iℏ(xpy − ypx)

= iℏLz

他も同様に行うことで

[Lx, Ly] = iℏLz , [Lz, Lx] = iℏLy , [Ly, Lz] = iℏLx

と求まります。これは上での J1, J2, J3を Lx, Ly, Lz にすれば全く同じ交換関係を構成しています。なので、上で
の結果と同じものが出てきます。しかし、物理としての要請が入ることによって状況が一部変わります。
　「中心力でのシュレーディンガー方程式」で行った式変形を簡単に見ていきます。時間に依存しないシュレー
ディンガー方程式は

− ℏ2

2m
∇2ψ(x) = Eψ(x)

これを極座標

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ

にすると、∇2 は

∇2 =
1

r2
(
∂

∂r
(r2

∂

∂r
) +

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2
)

なので、シュレーディンガー方程式は

− ℏ2

2m

( 1

r2

( ∂

∂r
(r2

∂

∂r
) +

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

))
ψ(r, θ, ϕ) = Eψ(r, θ, ϕ)

この式は

(
− ℏ2

2m

∂

∂r
(r2

∂

∂r
)− Er2

)
ψ(r, θ, ϕ) =

ℏ2

2m

( 1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

)
ψ(r, θ, ϕ)

と書けて、rの依存性と θ, ϕの依存性が分離しているので、ψ(r, θ, ϕ)を

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ)

と分離して書けます。
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　 L2 の極座標での形は「中心力でのシュレーディンガー方程式」の補足で求めていて

L2 = − ℏ2
( 1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

)
(10)

これをシュレーディンガー方程式にいれると

− ℏ2

2m

( 1

r2
∂

∂r
(r2

∂

∂r
)− 1

ℏ2r2
L2

)
ψ(r, θ, ϕ) = Eψ(r, θ, ϕ)

この中から L2 の部分だけを取り出します。変数分離の形から、L2 には rの微分がいないので

− ℏ2

2m

( 1

r2
∂

∂r
(r2

∂

∂r
)− 1

ℏ2r2
L2

)
R(r)Y (θ, ϕ) = ER(r)Y (θ, ϕ)

− ℏ2

2m

(
Y (θ, ϕ)

1

r2
∂

∂r
(r2

∂

∂r
)R(r)− 1

ℏ2r2
R(r)L2Y (θ, ϕ)

)
= ER(r)Y (θ, ϕ)

− ℏ2

2m

( 1

R(r)

1

r2
∂

∂r
(r2

∂

∂r
)R(r)− 1

ℏ2r2
1

Y (θ, ϕ)
L2Y (θ, ϕ)

)
= E

ℏ2

2m

1

R(r)

∂

∂r
(r2

∂

∂r
)R(r) + r2E =

1

2m

1

Y (θ, ϕ)
L2Y (θ, ϕ)

これの両辺は定数でなければいけないので、L2 の式は定数を cとすれば

L2Y (θ, ϕ) = cY (θ, ϕ)

となります。なので、Y (θ, ϕ)は L2 の固有関数です。
　演算子 L2 は上の J2 と同じ性質を持つので、固有状態と固有値を

L2|l,m⟩ = ℏ2l(l + 1)|l,m⟩

と持っています (上での jを lと書いている)。これからL2の固有関数 (波動関数)とするために、左から ⟨θ, ϕ|を
作用させることで (L2 には rの依存性がないから θ, ϕのみ)

⟨θ, ϕ|L2|l,m⟩ = ℏ2l(l + 1)⟨θ, ϕ|l,m⟩

L2⟨θ, ϕ|l,m⟩ = ℏ2l(l + 1)⟨θ, ϕ|l,m⟩

L2Y (θ, ϕ) = ℏ2l(l + 1)Y (θ, ϕ)

2行目では「シュレーディンガー方程式とハイゼンベルク方程式」で触れたように、L2での xは xに、pは−iℏ∇
への置き換えが行われます。今の場合では、上で求めたように演算子L2は微分演算子 (10)に置き換わります。と
いうわけで、L2 の固有関数 Y (θ, ϕ)の固有値は ℏ2l(l + 1)です。これから Y (θ, ϕ)が L2 と L3 の同時固有関数と
なり、|j,m⟩と同じ性質を持ちます。なので、Yl,m(θ, ϕ)と書くことにします (昇降演算子で Yl,mのmを変化させ
られる)。
　そうすると、シュレーディンガー方程式は
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− ℏ2

2m

( 1

r2
∂

∂r
(r2

∂

∂r
)− 1

ℏ2r2
L2

)
R(r)Yl,m(θ, ϕ) = ER(r)Yl,m(θ, ϕ)

− ℏ2

2m

(
Yl,m(θ, ϕ)

1

r2
∂

∂r
(r2

∂

∂r
)R(r)− 1

ℏ2r2
R(r)L2Yl,m(θ, ϕ)

)
= ER(r)Yl,m(θ, ϕ)

− ℏ2

2m
Yl,m(θ, ϕ)

( 1

r2
∂

∂r
(r2

∂

∂r
)− l(l + 1)

r2

)
R(r) = ER(r)Yl,m(θ, ϕ)

− ℏ2

2m

( 1

r2
∂

∂r
(r2

∂

∂r
)− l(l + 1)

r2

)
R(r) = ER(r)

となるので

− ℏ2

2m

( 1

r2
∂

∂r
(r2

∂

∂r
)− l(l + 1)

r2

)
R(r) = ER(r)

L2Yl,m(θ, ϕ) = ℏ2l(l + 1)Yl,m(θ, ϕ)

として、2つの方程式になります。というわけで、Yl,m の式は

−
( 1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

)
Yl,m(θ, ϕ) = ℏ2l(l + 1)Yl,m(θ, ϕ)

を満たす球面調和関数で、L2 の固有関数です。
　ここで大事なのは、このときの Yl,mの lが 0以上の整数になっている点です。上の話では、J2の固有値 j(j+1)
での jは整数だけでなく半整数も許されていました。しかし、軌道角運動量演算子においてはシュレーディンガー
方程式からの制限によって、整数しか取れなくなります。
　「スピン」で触れるようにスピン (スピン角運動量)にもここでの角運動量演算子が使われます。そして、スピ
ンでは整数、半整数どちらも取ります。取れる理由は単純で、実験でどちらも観測されているからです。半整数の
場合をフェルミオン、整数の場合をボソンと呼んでいます。フェルミオンは電子、ボソンはパイオンとかです。
　ちなみに、角運動量演算子の話の手順として、先に軌道角運動量を使って球面調和関数が固有関数として説明
していくこともできます。しかし、そのためには球面調和関数の性質を使わないと昇降演算子の話が出来ないの
で、非常に面倒になります。ただし、証明が分かりづらいだけなので、今見たように球面調和関数の性質と言い
切って証明なしにすれば、同じ程度の話で済みます。その上、そのままシュレーディンガー方程式が解けるので、
物理の話に持って行きやすいです。

・補足
　 (6),(7)での規格化における位相因子について触れておきます。(6)において規格化定数が

|C+
j,m|2 = ℏ2(j(j + 1)−m(m+ 1))

と与えられました。C+ は複素数です。上ではそのまま

C+
j,m = ℏ

√
j(j + 1)−m(m+ 1)

としましたが、複素数の絶対値は

C∗C = |C|2

であることを考えれば

C+
j,m = ℏeiδ

+√
j(j + 1)−m(m+ 1)
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と位相因子 eiδ
+

がいるほうがより一般的です (δ+ は任意の実数)。
　 C− も同様に位相因子を含めて

C−
j,m = ℏeiδ

−√
j(j + 1)−m(m− 1)

となります。これだけだと δ+と δ−は無関係に見えますが、昇降演算子による関係のために、δ+と δ−には関係
があります。(4),(8)を使って J+|j,m⟩を計算してみると、

J+|j,m⟩ = C+
j,m|j,m+ 1⟩

J−J+|j,m⟩ = C+
j,mJ−|j,m+ 1⟩

(J2 − J2
3 − ℏJ3)|j,m⟩ = C+

j,mC
−
j,m+1|j,m⟩

(j(j + 1)−m2 −m)|j,m⟩ = eiδ
+

eiδ
−√

j(j + 1)−m(m+ 1)
√
j(j + 1)−m(m+ 1)|j,m⟩

|j,m⟩ = eiδ
+

eiδ
−
|j,m⟩

から

eiδ
+

eiδ
−
= 1

とならなくてはいけないので、

δ+ = −δ−

の関係があります。なので、δ+ = 0と選べば自動的に δ− = 0になり

C±
j,m = ℏ

√
j(j + 1)−m(m± 1)

よって、C±
j,m は正になります。
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