
角運動量の合成

具体的を例を扱わない限り目的が分からない角運動量の合成の話を見ていきます。ここでは、合成した角運動量演

算子の固有状態が、合成に使われた角運動量演算子の固有値によってどの範囲に制限されるのかを求めるだけです。

ただ面倒な話をするだけなので、最後の結果に飛んでいいです。

補足として、途中で無視する数学的な細かいことを大雑把に説明しています。もしかしたら、先に補足を見た方が

分かりやすいかもしれません。

演算子のハットは省いています。

　ある 2つの異なった独立な対象があり、それぞれが角運動量 (角運動量演算子)を持っているとします。この 2つ

が合わさった全体としての角運動量をどう与えるのか見ていきます。

　 2つの独立な対象の角運動量演算子A,B は、それぞれの固有状態を |jA,mA⟩, |jB ,mB⟩として

A2|jA,mA⟩ = ℏ2jA(jA + 1)|jA,mA⟩ , A3|jA,mA⟩ = ℏmA|jA,mA⟩ , A±|jA,mA⟩ = α±
jA,mA

|jA,mA ± 1⟩

B2|jB ,mB⟩ = ℏ2jB(jB + 1)|jB ,mB⟩ , B3|jB ,mB⟩ = ℏmB |jB ,mB⟩ , B±|jB ,mB⟩ = β±
jB ,mB

|jB ,mB ± 1⟩

という関係を持っています。|jA,mA⟩, |jB ,mB⟩は規格化されていて

⟨jA,mA|j′A,m′
A⟩ = δjAj′A

δmAm′
A
, ⟨jB ,mB |j′B ,m′

B⟩ = δjBj′B
δmBm′

B

と与えられています。jA, jB は 0以上の整数か半整数で、mA,mB は

−jA ≤ mA ≤ jA , jB ≤ mB ≤ jB (mA,B = −jA,B ,−jA,B + 1, . . . , jA,B − 1, jA,B)

これから固有状態には

A±|jA,±jA⟩ = 0 , B±|jA,±jA⟩ = 0

という上限と下限が存在します。A,B = Lの交換関係は、レヴィ・チビタ記号 ϵabc(ϵ123 = +1)によって

[La, Lb] = iℏϵabcLc (1)

の形になっていて、A±, B± = L± と α±
jA,mA

, β±
jB ,mB

= D±
l,n は

L± = L1 ± iL2 , D
±
l,n = ℏ

√
l(l + 1)− n(n± 1)

となっています。また、A,B は独立な対象での角運動量なので、交換しないと独立ではなくなってしまうので、

A,B は交換します ([A1, B1] = [A1, B2] = · · · = 0)。

　ここで、全体の角運動量演算子は

J = A+B
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で与えられると考えます (下の補足も参照)。これが角運動量演算子と言うためには、(1)が成立していればいいで

す (A,B はエルミート演算子なので、その和の J もエルミート演算子)。例えば

[J1, J2] = [A1 +B1, A2 +B2]

= [A1, A2] + [A1, B2] + [B1, A2] + [B1, B2]

= iℏA3 + iℏB3

= iℏJ3

A,B は交換することを使っています。このように、実際に同じ交換関係を満たします。そうすると、当然

[J2, Ja] = 0

となっています。というわけで、J は角運動量演算子です。J を 2つの対象 A,B から合成された角運動量として

使うのは、これで上手くいくからです。

　 J の J2と J3の同時固有関数もいますが、それがA,Bとの同時固有状態になっているのかを見ます。JaとA2

との交換関係は

[J1,A
2] = [A1 +B1, A

2
1 +A2

2 +A2
3]

= [A1, A
2
1 +A2

2 +A2
3] + [B1, A

2
1 +A2

2 +A2
3]

= [A1, A
2
1 +A2

2 +A2
3]

= [A1, A
2
2] + [A1, A

2
3]

= A2[A1, A2] + [A1, A2]A2 +A3[A1, A3] + [A1, A3]A3

= iℏA2A3 + iℏA3A2 − iℏA3A2 − iℏA2A3

= 0

他の場合も同様で

[Ja,A
2] = 0 , [Ja,B

2] = 0

となっています。これを使えば J2 とでは

[J2,A2] = [J2
1 + J2

2 + J2
3 ,A

2] = 0

とすぐに分かります。J2 と Aa とでは
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[J2, A3] = [J2
1 + J2

2 + J2
3 , A3]

= [J2
1 , A3] + [J2

2 , A3] + [J2
3 , A3]

= J1[J1, A3] + [J1, A3]J1 + J2[J2, A3] + [J2, A3]J2 + J3[J3, A3] + [J3, A3]J3

= J1[A1, A3] + [A1, A3]J1 + J2[A2, A3] + [A2, A3]J2 + J3[A3, A3] + [A3, A3]J3

= − iℏJ1A2 − iℏA2J1 + iℏJ2A1 + iℏA1J2

= − iℏA1A2 − iℏB1A2 − iℏA2A1 − iℏA2B1 + iℏA2A1 + iℏB2A1 + iℏA1A2 + iℏA1B2

= − iℏB1A2 − iℏA2B1 + iℏB2A1 + iℏA1B2

̸= 0

のようになるので、交換しません。

　つまり、A2,B2, Ja,J
2は同時固有状態を持ちます (J2はA3, B3と交換しないのでA3, B3は省く)。そしてA,B,J

はそれぞれが角運動量演算子としての交換関係を満たしているので、同時固有状態を |(jA, jB)j,m⟩と書くことに
すれば

J2|(jA, jB)j,m⟩ = ℏ2j(j + 1)|(jA, jB)j,m⟩

J3|(jA, jB)j,m⟩ = ℏm|(jA, jB)j,m⟩

A2|(jA, jB)j,m⟩ = ℏ2jA(jA + 1)|(jA, jB)j,m⟩

B2|(jA, jB)j,m⟩ = ℏ2jB(jB + 1)|(jA, jB)j,m⟩

関係が同じなので、j は 0以上の整数か半整数、mは −j ≤ m ≤ j です。そして、昇降演算子も存在するので

J±|jA, jB ; j,m⟩ = C±
j,m|jA, jB ; j,m± 1⟩ (J± = J1 ± iJ2)

と書くことにし（C±
j,m もD±

l,n と同じ）、|(jA, jB)j,±j⟩に J± を作用させると 0になります。

　ここから、2つの対象における角運動量は jA, jB が固定されているとします (mA,mB は jA, jB によって取れる

範囲が決まる)。これは jA, jB を持っている 2つの対象を合わせた全体の角運動量演算子が知りたいからです (例え

ば 2つの対象が角運動量 jA = 1, jB = 1/2を持っているとして、この 2つを合わせる)。このため、|(jA, jB)j,m⟩
で固定されていないのは j,mだけで、j,mがどの値を取れるかは jA, jB によって決まるはずです。なので、煩わし

ければ、|(jA, jB)j,m⟩は |j,m⟩としても意味が分かっていれば平気です。
　 J の作用の仕方がA,B と同じなので、|jA,mA⟩, |jB ,mB⟩のように、|(jA, jB)j,m⟩は規格化されていて正規直
交関係

⟨jA, jB ; j,m|jA, jB ; j′,m′⟩ = δjj′δmm′

を持つとします。jA, jB は固定されているので、j,mによって与えられています。ここから、J の固有状態と言っ

たときは |(jA, jB)j,m⟩を指すことにします。
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　これで、合成された角運動量演算子の固有状態の外観は作れました。次に必要になるのが j,mがどのような値を

取れるのかです。すでに言ったように、J は角運動量演算子なので、A,Bから合成されたというのとは無関係に、

jは 0以上の整数か半整数で、mは−j ≤ m ≤ jです。しかし、J はA,Bから合成されたものなので、jは自由に

与えられるものでなく、jA, jB から決まる量のはずです。なので、j が与えられた jA, jB に対してどの範囲を取れ

るのかを求める必要があります。これがここで求めたいものです。

　まず、新しい状態を 1つ作ります。今はA,B の固有状態 |jA,mA⟩, |jB ,mB⟩があるので、この 2つから

|jA,mA; jB ,mB⟩

という状態が作れるとします。これは |jA,mA⟩での jA,mA、|jB ,mB⟩での jB ,mB によって指定される状態で

A2|jA,mA; jB ,mB⟩ = ℏ2jA(jA + 1)|jA,mA; jB ,mB⟩

A3|jA,mA; jB ,mB⟩ = ℏmA|jA,mA; jB ,mB⟩

A±|jA,mA; jB ,mB⟩ = α±
jA,mA

|jA,mA + 1; jB ,mB⟩

A±|jA,±jA; jB ,mB⟩ = 0

B2|jA,mA; jB ,mB⟩ = ℏ2jB(jB + 1)|jA,mA; jB ,mB⟩

B3|jA,mA; jB ,mB⟩ = ℏmB |jA,mA; jB ,mB⟩

B±|jA,mA; jB ,mB⟩ = β±
jB ,mB

|jA,mA; jB ,mB + 1⟩

B±|jA,mA; jB ,±jB⟩ = 0

となる状態とします (下の補足参照)。これも規格化されていて

⟨jA,m′
A; jB ,m

′
B |jA,mA; jB ,mB⟩ = δmAm′

A
δmBm′

B

とします (jA, jBは固定されている)。|jA,mA⟩, |jB ,mB⟩の正規直交性から、こうするのは自然です。|jA,mA; jB ,mB⟩
を (AB)の固有状態と言っていきます。

　 (AB)の固有状態を使って |(jA, jB)j,m⟩を展開します。|jA,mA; jB ,mB⟩の完全性は jA, jB は固定されているた

めに可能な状態はmA,mB によるので、可能なmA,mB (−jA,B ≤ mA,B ≤ jA,B)による和で与えられて

1 =
∑

mA,mB

|jA,mA; jB ,mB⟩⟨jA,mA; jB ,mB |

となります。J の固有状態 |(jA, jB)j,m⟩に差し込むことで

|(jA, jB)j,m⟩ =
∑

mA,mB

|jA,mA; jB ,mB⟩⟨jA,mA; jB ,mB |(jA, jB)j,m⟩

=
∑

mA,mB

⟨jA,mA; jB ,mB |(jA, jB)j,m⟩|jA,mA; jB ,mB⟩

=
∑

mA,mB

C(jA, jB , j : mA,mB ,m)|jA,mA; jB ,mB⟩ (2)
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この係数 C(jA, jB , j : mA,mB ,m)をクレブシュ・ゴルダン (Clebsch-Gordan)係数、もしくはウィグナー (Wigner)

係数と言います。今は |jA,mA; jB ,mB⟩の直交性から、mA,mBが異なる (AB)の固有状態は全て直交しています。な

ので、右辺は線形独立な量による線形結合です。よって、(2)は例えば、j = j1,m = m1と与えられた |(jA, jB)j1,m1⟩
は C(jA, jB , j1 : mA,mB ,m1)を係数にする |jA,mA; jB ,mB⟩の線形結合でかけることを言っています。
　また、|(jA, jB)j,m⟩の完全性は、可能な状態が j,mで指定されることから、可能な j,mに対する和として

1 =
∑
j,m

|(jA, jB)j,m⟩⟨(jA, jB)j,m|

これを使えば |jA,mA; jB ,mB⟩を J の固有状態で展開した形で書けます。

　展開形を見ていくことで、本題の |(jA, jB)j,m⟩での j,mが取れる範囲が分かります。まず、mについて見てい

きます。J3 を |jA,mA; jB ,mB⟩に作用させると

J3|jA,mA; jB ,mB⟩ = (A3 +B3)|jA,mA; jB ,mB⟩

= ℏ(mA +mB)|jA,mA; jB ,mB⟩

となっていることと

J3|(jA, jB)j,m⟩ = ℏm|(jA, jB)j,m⟩

であることから

J3|(jA, jB)j,m⟩ =
∑

mA,mB

C(jA, jB , j : mA,mB ,m)J3|jA,mA; jB ,mB⟩

m|(jA, jB)j,m⟩ =
∑

mA,mB

(mA +mB)C(jA, jB , j : mA,mB ,m)|jA,mA; jB ,mB⟩

∑
mA,mB

mC(jA, jB , j : mA,mB ,m)|jA,mA; jB ,mB⟩ =
∑

mA,mB

(mA +mB)C(jA, jB , j : mA,mB ,m)|jA,mA; jB ,mB⟩

0 =
∑

mA,mB

(m−mA −mB)C(jA, jB , j : mA,mB ,m)|jA,mA; jB ,mB⟩

これから

m = mA +mB

を維持していない項でのクレブシュ・ゴルダン係数は 0になることが分かります。実際に、m = mA +mB になっ

ている項とそれ以外に分けてみると

m|(jA, jB)j,m⟩ =
∑

mA,mB

(mA +mB)C(jA, jB , j : mA,mB ,m)|jA,mA; jB ,mB⟩

= m
∑
i

C(jA, jB , j : mA +mB = mi = m)|jA,mA; jB ,mB ; (mA +mB = mi = m)⟩

+
∑
j

mjC(jA, jB , j : mA +mB = mj ̸= m)|jA,mA; jB ,mB ; (mA +mB = mj ̸= m)⟩ (3)
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iはmA とmB の組み合わせがm = mA +mB となる場合に対して、j はそれ以外の組み合わせに対してです。第

2項が 0になるという条件、つまりm = mA +mB でないときクレブシュ・ゴルダン係数 C(jA, jB , j : mA,mB ,m)

は 0という条件を入れると

m|(jA, jB)j,m⟩ = m
∑
i

C(jA, jB , j : mA +mB = mi = m)|jA,mA; jB ,mB ; (mA +mB = mi = m)⟩

|jA, jB ; j,m⟩ =
∑
i

C(jA, jB , j : mA +mB = mi = m)|jA,mA; jB ,mB ; (mA +mB = mi = m)⟩

=
∑

mA,mB

C(jA, jB , j : mA,mB ,m)|jA,mA; jB ,mB⟩

となって、(2)を再現できます (最後はクレブシュ・ゴルダン係数の条件を入れて (3)を巻き戻しただけ)。よって、

m = mA +mB でないときクレブシュ・ゴルダン係数は 0という条件があり、(2)におけるm = mA +mB となら

ないmA,mB の組み合わせによる項は 0です。

　この条件によってmA とmB 両方の和でなく片方の和を取るだけで十分になります。なので

|(jA, jB)j,m⟩ =
∑
mA

C(jA, jB , j : mA,m)|jA,mA; jB ,m−mA⟩

と書くこともできます。

　mの条件m = mA +mB から、クレブシュ・ゴルダン係数が 0にならないmの最大値mmaxはmmax = jA + jB

です。これより上のmmax = (jA + 1) + jB のような場合がないのは

−jA,B ≤ mA,B ≤ jA,B

だからです。また、他のmmax = jA + jB となるmmax = (jA + 1) + (jB − 1)のような場合が許されないのも同じ

理由です。

　ここでいったん状況を整理します。今知りたいのは、J の固有状態 |jA, jB ; j,m⟩での j,mがどんな値を取れる

のかです。このとき固定されているのは jA と jB の値だけです。mに対しては角運動量演算子としての性質から、

−j ≤ m ≤ jとなっています。そして、クレブシュ・ゴルダン係数が 0にならないmの取り方はm = mA +mB と

なっていて、このときの最大値はmmax = jA + jB です。

　ここで、具体的なmとしてm = mmax = jA + jB というのが出てきたので、これによる J の固有状態

|(jA, jB)j,mmax⟩ (−j ≤ mmax ≤ j)

を見ます。クレブシュ・ゴルダン係数が 0にならない項はmmax = jA + jB を満たさなければいけないので、(2)は

|(jA, jB)j,mmax⟩ =
∑

mA,mB

C(jA, jB , j : mA,mB ,mmax)|jA,mA; jB ,mB⟩

= C(jA, jB , j : jA, jB ,mmax)|jA, jA; jB , jB⟩

mmax = jA + jBとなる (mA,mB)の組 (jA, jB), (jA + 1, jB − 1), . . .
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による和ですが、−jA,B ≤ mA,B ≤ jA,B の条件から、(jA, jB)しか存在しません。よって、このクレブシュ・ゴル

ダン係数は単に C と書くことにして

|(jA, jB)j,mmax⟩ = C|jA, jA; jB , jB⟩

これに J+ を作用させてみると

J+|(jA, jB)j,mmax⟩ = CJ+|jA, jA; jB , jB⟩

C+
j,jmax

|(jA, jB)j,mmax + 1⟩ = C(A+ +B+)|jA, jA; jB , jB⟩

= C(A+|jA, jA; jB , jB⟩+B+|jA, jA; jB , jB⟩)

mA,B の条件から右辺は 0になるので

J+|jA, jB ; j,mmax⟩ = 0

つまり

J3J+|(jA, jB)j,mmax⟩ = 0 (J3|(jA, jB)j,mmax⟩ = ℏmmax|(jA, jB)j,mmax⟩)

なので、これは J3 が取れる最大の固有値がmmax であることを言っています。そうすると −j ≤ mmax ≤ j にお

いてmmax より大きな値は存在しないことから j = mmax になります。よって、mmax において、j が取れるのは

mmax のみとなります。それを

jmax = mmax = jA + jB

と書くことにすれば、mmax における J の固有状態は |(jA, jB)jmax,mmax⟩しか許されないことになり

J+|(jA, jB)jmax,mmax⟩ = 0

から、jmax,mmaxが j,mの可能な値の最大値になります (−j ≤ m ≤ jから jはmの最大値よりも上の値を取れな

い)。というわけで、|(jA, jB)jmax,mmax⟩が |(jA, jB)j,m⟩において可能な j とmが取れる最大の値での状態です

　そして、これに下降演算子 J−を使えば、J3の固有値は 1刻みで−mmax = −jmaxまで下げていけるので、jmax

において

|(jA, jB)jmax,mmax⟩ , |(jA, jB)jmax,mmax − 1⟩, . . . , |(jA, jB)jmax,−mmax⟩ (4)

と取れることが分かり、mmax = jmax から、j = jmax では 2jmax + 1個の J の固有状態があります。

　また、(2)は規格化から

|(jA, jB)jmax,mmax⟩ = C|jA, jA; jB , jB⟩

= |jA, jA; jB , jB⟩ (5)
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HHHHHj
m

j j − 1 j − 2 · · · −(j − 2) −(j − 1) −j

j |j, j⟩ |j, j − 1⟩ |j, j − 2⟩ · · · |j,−(j − 2)⟩ |j,−(j − 1)⟩ |j,−j⟩

j − 1 |j − 1, j − 1⟩ |j − 1, j − 2⟩ · · · |j − 1,−(j − 2)⟩ |j − 1,−(j − 1)⟩

j − 2 |j − 2, j − 2⟩ · · · |j − 2,−(j − 2)⟩

...
...

j∗ |j∗, j∗⟩ · · · |j∗,−j∗⟩

表 1: |(jA, jB)j,m⟩ = |j,m⟩の可能な状態

となり、このときのクレブシュ・ゴルダン係数は 1です。正確には ±1ですが、+1に取る慣習になっています。

　 j は jmax に固定されるという条件はないので、次に必要なのが j がどこまで下げられるかです。今見たのは、

mA +mB が最大値 jA + jB をとった場合です。なので、mmaxの 1つ下の状態としてmA +mB = mmax − 1とし

たものを考えます (mA,mB は 1刻み)。これは (4)での 2番目の状態としてすでにいますが、m = mmax − 1が J3

の最大の固有値となる状態

J+|(jA, jB)j,mmax − 1⟩ = 0

があるとすれば、jmaxから 1下がった j = mmax − 1 = jmax − 1による状態となります (存在することは後で示し

ます)。よって、jmax から 1下がった状態として

|(jA, jB)jmax − 1,mmax − 1⟩

が作れて、これに下降演算子 J− を作用させていくことで

|(jA, jB)jmax − 1,mmax − 1⟩ , |(jA, jB)jmax − 1,mmax − 2⟩, . . . , |(jA, jB)jmax − 1,−(mmax − 1)⟩

となります。これは 2(jmax − 1) + 1個あります。

　同じことがこの先も可能なので、j を jmax から jmax − 1, jmax − 2, . . .と作っていけます。このようにして作れ

る |(jA, jB)j,m⟩の可能な状態は表 1にまとめています。ページ内におさまるように、jmax = j と書いています

(jmax = mmax = jA + jB = j)。jmax = mmax = jA + jB なので、jmaxとmmaxは好きなほうを使えばいいです。

後は、|(jA, jB)jmax − 1, jmax − 1⟩が存在することと、jの最小値 j∗を決めればいいです。ここからは最小値 j∗を

jmin と書いていきます。

　 |(jA, jB)jmax − 1,mmax − 1⟩がいることを確かめます。まず (5)に J− を作用させることで

J−|(jA, jB)jmax,mmax⟩ = J−|jA, jA; jB , jB⟩

C−
jmax,mmax

|(jA, jB)jmax,mmax − 1⟩ = (A− +B−)|jA, jA; jB , jB⟩

= A−|jA, jA; jB , jB⟩+B−|jA, jA; jB , jB⟩

= α−
jA,jA

|jA, jA − 1; jB , jB⟩+ β−
jB ,jB

|jA, jA; jB , jB − 1⟩

|(jA, jB)jmax,mmax − 1⟩ = a|jA, jA − 1; jB , jB⟩+ b|jA, jA; jB , jB − 1⟩ (6)
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α−
jA,jA

, β−
jB ,jB

, C−
jmax,mmax

は全て正にとっているので、a, bも正です。これが表 1での 1行 2列目にいる J の固有

状態を (AB)の固有状態で書いた形です。

　次にm = mmax − 1を作れるクレブシュ・ゴルダン係数が 0にならない取り方を見てみます。mAとmB の取れ

る値内でmA +mB = mmax − 1となる取り方は、

mA = jA , mB = jB − 1

か

mA = jA − 1 , mB = jB

の 2通りです。なので、この 2つ以外はクレブシュ・ゴルダン係数が 0になることから、(2)は

|(jA, jB)j,mmax − 1⟩ =
∑

mA,mB

C(jA, jB , j : mA,mB ,mmax − 1)|jA,mA; jB ,mB⟩ (7)

= C1|jA, jA − 1; jB , jB⟩+ C2|jA, jA; jB , jB − 1⟩ (8)

|jA,mA; jB ,mB⟩の直交性から、右辺第 1項と第 2項の状態は直交し、この 2つの (AB)の固有状態が線形独立である

ことを意味します。そして、線形独立な 2次元ベクトル v1,v2による線形結合には、それに直交する別の v1,v2によ

る線形結合が 1つあります。なので、今の場合も、この線形結合と直交する、|jA, jA−1; jB , jB⟩と |jA, jA; jB , jB−1⟩
による別の線形結合が 1つあるはずです (2次元ベクトルでは 1つあるのと同じで、今は 2つの状態による線形結

合だから 2次元と同じで 1つ)。

　このように考えることで、|(jA, jB)j,mmax − 1⟩には j によって区別される 2つの J の固有状態

|(jA, jB)j1,mmax − 1⟩ , |(jA, jB)j2,mmax − 1⟩

があると言えます (j 以外は固定されているので j しか動かせないから)。j1 ̸= j2 なので、|(jA, jB)j,m⟩の直交性
からこの 2つは直交します。そうすると、j1 の方が (AB)の固有状態の線形結合 (6)で与えられているとすれば

|(jA, jB)j1,mmax − 1⟩ = a|jA, jA − 1; jB , jB⟩+ b|jA, jA; jB , jB − 1⟩

|(jA, jB)j2,mmax − 1⟩ = c|jA, jA − 1; jB , jB⟩+ d|jA, jA; jB , jB − 1⟩

この 2つが直交するように c, dを決めればいいです。直交性を使うことで

0 = ⟨(jA, jB)j2,mmax − 1|(jA, jB)j1,mmax − 1⟩

= (c⟨jA, jA − 1; jB , jB |+ d⟨jA, jA; jB , jB − 1|)(a|jA, jA − 1; jB , jB⟩+ b|jA, jA; jB , jB − 1⟩)

= ac⟨jA, jA − 1; jB , jB |jA, jA − 1; jB , jB⟩+ bc⟨jA, jA − 1; jB , jB |jA, jA; jB , jB − 1⟩

+ ad⟨jA, jA; jB , jB − 1|jA, jA − 1; jB , jB⟩+ bd⟨jA, jA; jB , jB − 1|jA, jA; jB , jB − 1⟩

= ac+ bd

ac = − bd
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なので

|(jA, jB)j1,mmax − 1⟩ = a|jA, jA − 1; jB , jB⟩+ b|jA, jA; jB , jB − 1⟩

|(jA, jB)j2,mmax − 1⟩ = b|jA, jA − 1; jB , jB⟩ − a|jA, jA; jB , jB − 1⟩

となります。1番目のは j1 = jmaxなので表の 1行 2列目にいて、2番目の j2によるのが新しく出てきた状態です。

係数の位置を交換してマイナスをつけたものが直交するという性質も線形結合の話でよく出てくるものです。

　 j2 の方に J+ を作用させてみると

J+|(jA, jB)j2,mmax − 1⟩ = bJ+|jA, jA − 1; jB , jB⟩ − aJ+|jA, jA; jB , jB − 1⟩

= bα+
jA,jA−1|jA, jA; jB , jB⟩+ bβ+

jB ,jB
|jA, jA − 1; jB , jB + 1⟩

− aα+
jA,jA

|jA, jA + 1; jB , jB − 1⟩ − aβ+
jB ,jB−1|jA, jA; jB , jB⟩

= bα+
jA,jA−1|jA, jA; jB , jB⟩ − aβ+

jB ,jB−1|jA, jA; jB , jB⟩

=
β−
jB ,jB

α+
jA,jA−1

C−
jmax,mmax

|jA, jA; jB , jB⟩ −
α−
jA,jA

β+
jB ,jB−1

C−
jmax,mmax

|jA, jA; jB , jB⟩

mA,mB は jA, jB が最大値なので、jA + 1, jB + 1の状態は消えます。係数の計算は

α+
jA,jA−1β

−
jB ,jB

= ℏ
√
jA(jA + 1)− jA(jA − 1)

√
jB(jB + 1)− jB(jB − 1) = ℏ

√
4jAjB

α−
jA,jA

β+
jB ,jB−1 = ℏ

√
jA(jA + 1)− jA(jA − 1)

√
jB(jB + 1)− jB(jB − 1) = ℏ

√
4jAjB

となっているので、消えて

J+|(jA, jB)j2,mmax − 1⟩ = 0

つまり、この J の固有状態は j2 における J3 の最大の固有値を持った状態です。このため、j2 は

j2 = mmax − 1 = jmax − 1

と求まって、J の固有状態は

|(jA, jB)jmax − 1, jmax − 1⟩

と取れることになります。よって、表 1において、jmax − 1の行での J3の最大の固有値は jmax − 1なので、これ

の左 (2行 1列目)には状態が入らず、右には J− を作用させたものがm = −(jmax − 1)まで入っていきます。

　ちなみに、ここで使った a, bからクレブシュ・ゴルダン係数 C1, C2が求まります、これがクレブシュ・ゴルダン

係数を求める方法になっていて、「クレブシュ・ゴルダン係数の符号」で具体的に求めています。

　 2つの (AB)の固有状態の線形結合によって、
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|jA, jB ; j1,mmax − 1⟩ , |jA, jB ; j2,mmax − 1⟩ (9)

というm = mmax − 1での 2つの J の固有状態が作れたことから、3つの (AB)の固有状態では 3つの J の固有状

態 (m = mmax − 2)が作れることが予想できると思います。これは、2次元の線形結合 a1v1 + a2v2 では直交する

のが 1つ (合計 2つ)、3次元の線形結合 a1v1 + a2v2 + a3v3では直交するのが 2つ (合計 3つ)、のように増えてい

くのと同じです。そのため、表 1の 3列目には 3つの状態が入ります。

　というわけで、後は同様にして、|(jA, jB)jmax − 2,mmax − 2⟩を |(jA, jB)jmax,mmax − 2⟩と |(jA, jB)jmax −
1,mmax − 2⟩とに直交し J+で 0になるとして求める、ということを繰り返していけば、表が埋まっていきます。具

体的な形を知る必要がなければ、単純に |(jA, jB)jmax, jmax⟩での jmax, jmax から −1を引いていけば各行での一

番左端になります。

　最後に jminを求めます。そのために、表における各列の個数 (m = jmax, jmax − 1, . . .の状態の数)を数えます。

m = jmax での状態は j = jmax のみなので 1個、m = jmax − 1では j = jmax と j = jmax − 1での 2個です。同

様にしていけば、予想できるように

m = jmax : 1個

m = jmax − 1 : 2個

m = jmax − 2 : 3個

...

m = jmax − n : n+ 1個

この個数は、表 1の縦方向を見れば当たり前ですが

|(jA, jB)jmax, jmax − n⟩

から

|(jA, jB)jmax − n, jmax − n⟩

までの個数のことなので、jmax − (jmax − n) + 1 = n+ 1個となっています。一番下がこれになっているのは

J+|jA, jB ; jmax − n, jmax − n⟩ = 0

だからです。表 1で言えば、一番左上から、j,mをそれぞれ−1していったものが、一番左端の状態になっています。

　また、この個数は、(9)のところで触れた線形結合の話から、(2)における右辺の項の数と同じです。これを利用

します。

　ここで、n = 2jB として、

m = jmax − n = (jA + jB)− 2jB = jA − jB
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となる J の固有状態を見てみます。どちらも同じ結論になるので、jA > jB とします。このときの、クレブシュ・

ゴルダン係数が 0にならない組み合わせは

(mA,mB) = (jA,−jB), (jA − 1,−jB + 1), (jA − 2,−jB + 2), . . . , (jA − jB , 0), . . . , (jA − 2jB , jB)

となります。jA > jB なので、jB が先に 0にたどり着き、+jB にも先にたどり着きます。そして、

mA = jA − 2jB > −jA (−jB > −jA)

となっているので、−jA ≤ mA ≤ jAも満たしています。なので、これは−jB から jB までの個数となって、2jB +1

個で、n = 2jB から n+ 1個です。よって、この場合でのクレブシュ・ゴルダン係数が 0にならない項の数は n+ 1

個になり、(2)での右辺には n+ 1個の項があります。そして、(9)での話と同じように、今のm = jA − jB におい

て |jA, jB ; j,m⟩の可能な状態の個数が n+ 1個あることになります。

　これは jによる区別が n+ 1個あることなので、表でのm = jA − jB の個数と比べてみます。m = jA − jB での

表の一番下の状態は j = m = jmax − nの状態なので、

jmax − (jmax − n) + 1 = n+ 1 (n = 2jB)

よって、同じ個数です。

　ここからさらに 1下げて (n = 2jB + 1)

m = jmax − n = (jA + jB)− (2jB + 1) = jA − jB − 1

としてみます。同様にすることで

(mA,mB) = (jA − 1,−jB), (jA − 2,−jB + 1), (jA − 3,−jB + 2), . . . , (jA − jB − 1, 0), . . . , (jA − 1− 2jB , jB)

なので、たとえ等号での jA = jB + 1でも

jB + 1− 1− 2jB = −jB > −jA

なので、−jA ≤ mA ≤ jA を満たしています。このときの組み合わせの個数は jB の取り方の個数なので、2jB + 1

個になりますが、n = 2jB + 1なので nにすれば、n個です。一方で、表 1から数える個数は常に n+ 1個なので、

個数が合わなくなっています。

　表 1から求める個数は機械的に先を予測しての個数なので、常に成立している保証がないことを考えれば、m =

jA − jB − 1の状態

|(jA, jB)jmax, jA − jB − 1⟩

|(jA, jB)jmax − 1, jA − jB − 1⟩

...

|(jA, jB)jA − jB , jA − jB − 1⟩

|(jA, jB)jA − jB − 1, jA − jB − 1⟩ = |jA, jB ; jmax − n, jmax − n⟩ (n = 2jB + 1)
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のなかに成立していないものがあります。どれかは、この表を求めるときの話を持ち出せばすぐに分かります。こ

の表は一番左端を求めて、J−を作用させていくことで右側の状態を求めていくという手順になっています。そうす

ると、|(jA, jB)jA − jB , jA − jB⟩の状態がいることは確かめられているので最後から 1個前までは存在でき、これ

で n個です。よって、最後の |jA, jB ; jA − jB − 1, jA − jB − 1⟩が存在できない状態になります。
　つまり、(2)において、j = jA − jB まではmA,B の条件とクレブシュ・ゴルダン係数が 0でないという条件から

n+ 1個の項が出てきますが、j = jA − jB − 1になるとmA,B の条件に早く引っかかるために n個の項しか出てこ

なくなるということです。

　 j = jA − jB − 1での一番左端での状態が存在しない以上、この先は存在しないので、jは j = jA − jB (jA > jB)

で止まります。というわけで、j の可能な範囲は

jA + jB , jA + jB − 1, . . . , |jA − jB |

となります (jA < jB でも同じになるから絶対値をつけている)。

　これで話は終わりです。これまでの話をまとめます。角運動量演算子A,B を持つ独立な 2つの対象から

J = A+B

と合成した角運動量演算子 J を作ります。このとき、J2,A2,B2 の同時固有状態を

J2|(jA, jB)j,m⟩ = ℏ2j(j + 1)|(jA, jB)j,m⟩

J3|(jA, jB)j,m⟩ = ℏm|(jA, jB)j,m⟩

J±|(jA, jB)j,m⟩ = C±
j,m|(jA, jB)j,m± 1⟩

A2|(jA, jB)j,m⟩ = ℏ2jA(jA + 1)|(jA, jB)j,m⟩

B2|(jA, jB)j,m⟩ = ℏ2jB(jB + 1)|(jA, jB)j,m⟩

と作れます。このとき同時固有状態 |(jA, jB)j,m⟩における j,mには

j = jA + jB , jA + jB − 1, . . . , |jA − jB |

− j ≤ m ≤ j

という制限がかかります。|(jA, jB)j,m⟩が可能な取り方は表 1になっています（jmin = |jA−jB |, jmax = jA+jB）。

　そして、A,B でのそれぞれの固有状態 |jA,mA⟩, |jB ,mB⟩から作られる

A2|jA,mA; jB ,mB⟩ = ℏ2jA(jA + 1)|jA,mA; jB ,mB⟩

A3|jA,mA; jB ,mB⟩ = ℏmA|jA,mA; jB ,mB⟩

A±|jA,mA; jB ,mB⟩ = α±
jA,mA

|jA,mA + 1; jB ,mB⟩

B2|jA,mA; jB ,mB⟩ = ℏ2jB(jB + 1)|jA,mA; jB ,mB⟩

B3|jA,mA; jB ,mB⟩ = ℏmB |jA,mA; jB ,mB⟩

B±|jA,mA; jB ,mB⟩ = β±
jB ,mB

|jA,mA; jB ,mB + 1⟩
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というA,B における同時固有状態 |jA,mA; jB ,mB⟩を定義すると

|(jA, jB)j,m⟩ =
∑

mA,mB

C(jA, jB , j : mA,mB ,m)|jA,mA; jB ,mB⟩

と書けます。C(jA, jB , j : mA,mB ,m)をクレブシュ・ゴルダン（Clebsch-Gordan）係数と言い、m = mA +mB の

ときに値を持ちます。ちなみに、クレブシュは Clebschという綴りで、この人はドイツ人です。そのため bの発音

が英語かドイツ語かで統一されていないらしく、ブかプの両方が使われています。人名なのでドイツ語に合わせる

のがいい気もしますが、最近はブを使っている場合が多そうなので、ブにしていました。

　 j の範囲を決めるのが面倒だっただけで、結果としてはこれだけです。後は具体的に jA, jB を与えて、クレブ

シュ・ゴルダン係数を決めていくという話になります。|jA, jB ; jmax − 1,mmax − 1⟩が存在することを示したのと
同じように下降演算子を作用させる手順から求めるか、漸化式を使って求められます。漸化式は「クレブシュ・ゴ

ルダン係数の符号」で求めています。

　クレブシュ・ゴルダン係数の一般的な公式はウィグナーによって

C(jA, jB , j : mA,mB ,m) = ⟨jA,mA; jB ,mB |(jA, jB)j,m⟩ = (−1)jA−jB+m
√

2j + 1

 jA jB j

mA mB −m


と求められていて、ここでの

 jA jB j

mA mB −m


=

√
(jA + jB − j)!(jA − jB + j)!(−jA + jB + j)!

(jA + jB + j + 1)!

×
√
(jA +mA)!(jA −mA)!(jB +mB)!(jB −mB)!(j +m)!(j −m)!

×
∑
r

(−1)r+jA−jB−m

r!(jA + jB − j − r)!(jA −mA − r)!(jB +mB − r)!

1

(j − jB +mA + r)!(j − jA −mB + r)!

を 3j 記号 (3j-symbol)と言います。rは 0以上の整数で、階乗部分が負にならない範囲で取ります。これは下降演

算子を作用させる手順から求められます。しかし、これが必要になることはあまりなく、よくでてくる場合を 2,3

個計算したら後は公式扱いにして、本とかに載っている結果を使ってしまえばいいと思います。

・補足

　余計な情報を入れたくなかったので省いた数学的な細かいことを簡単に言って、その視点から上の話を見直しま

す。数学はそんなに厳密に扱っていないです。簡単に言ってしまえば、量子力学で出てくるエルミート演算子の固

有状態は正規直交系になっているから、それを利用しようというだけです。

　 2つのベクトル空間 V,W (内積は定義されている)から新しいベクトル空間 U を

U = V ⊗W

と作れます。「⊗」はテンソル積の記号で、単に V,W から U を作る記号と思えばいいです。テンソル積によって作

られたベクトル空間 U の次元は V の次元とW の次元の積になっています。
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　この話からなんとなく予想できるように、基底ベクトルのテンソル積から新しいベクトル空間での基底ベクトル

が作れます。例えば、3次元ベクトル空間として、V の基底ベクトルを e1, e2, e3、W の基底ベクトルを g1, g2, g3

とすれば U での基底ベクトルは

e1 ⊗ g1 , e1 ⊗ g2 , e1 ⊗ g3 , e2 ⊗ g1 , e2 ⊗ g2

e2 ⊗ g3 , e3 ⊗ g1 , e3 ⊗ g2 , e3 ⊗ g3

という 9個 (組み合わせの数から 3× 3 = 9)のテンソル積で表されます (U は 3× 3 =9次元ベクトル空間)。ただ書

いただけなので、ei ⊗ gj が具体的に何であるかはどうでもいいです。

　角運動量演算子A,B が作用する |jA,mA⟩, |jB ,mB⟩でも同じように考えます。言葉を統一するために状態もベ
クトルと呼んでいきます。jA, jB が固定されているとします。|jA,mA⟩, |jB ,mB⟩によって張られる有限次元ベクト
ル空間を作り (mA,mB がベクトルを区別する)、そのベクトル空間を VA, VB と呼ぶことにします。VA, VB の次元

はmA,mB の数なので、2jA + 1, 2jB + 1次元です。例えばベクトル v = (v1, v2, v3)と |j,m⟩は

|j,−j⟩, |j,−j + 1⟩, · · · , |j,+j⟩

であることを対応させればいいです。

　ベクトル空間の基底になれることを簡単に言っておきます (エルミート演算子の固有ベクトルは正規直交系とい

うだけ)。|jA,mA⟩, |jB ,mB⟩はエルミート演算子の固有ベクトルなので、mA,mB による正規直交系になっていて

⟨jA,mA|jA,m′
A⟩ = δmAm′

A
, ⟨jB ,mB |jB ,m′

B⟩ = δmBm′
B

を持ちます (直交性から線形独立)。そして、VA, VB 上の任意のベクトルは正規直交系の線形結合で書けます (|ψ⟩ =
Σcn|ϕn⟩)。というわけで、これらは正規直交系 (正規直交基底)で、それぞれのベクトル空間における基底ベクトル

となります。

　次に、2つの異なるベクトル空間 VA, VB における基底ベクトル |jA,mA⟩, |jB ,mB⟩から作られる新しいベクトル
空間 V = VA ⊗ VB における基底ベクトルを

|jA,mA; jB ,mB⟩ = |jA,mA⟩ ⊗ |jB ,mB⟩

と書きます (mA,mB が基底ベクトルの区別をしている)。左辺はmA,mB によって指定される V の基底ベクトルと

なっています。|jA,mA; jB ,mB⟩がいるベクトル空間 V の次元は (2jA+1)(2jB +1)です (mA,B の個数は 2jA,B +1

だから)。

　このようになっていることが分かると、(2)のような

∑
mA,mB

C(mA,mB)|jA,mA; jB ,mB⟩ =
∑

mA,mB

C(mA,mB)|jA,mA⟩ ⊗ |jB ,mB⟩ (10)

という形が、ベクトル空間 V での基底ベクトル |jA,mA; jB ,mB⟩による線形結合になっているのがはっきりします。
　次にこの |jA,mA; jB ,mB⟩に作用する演算子を作ります。|jA,mA⟩に作用するAと、|jB ,mB⟩に作用するBは、

異なったベクトル空間で定義されています。そのため

J = A+B
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という演算子は作れませんし (異なるベクトル空間の和は定義されていない)、|jA,mA; jB ,mB⟩のベクトル空間で
の演算子にもなっていません。これを回避するために、|jA,mA⟩での恒等演算子 IA と、|jB ,mB⟩での恒等演算子
IB によって

J = A⊗ IB + IA ⊗B (11)

とします (こう書いても J の交換関係は変わらなく、角運動量演算子の交換関係を作る)。恒等演算子はようはその

ベクトル空間での 1なので、1とテンソル積を取ることでA,B の意味を変えずに |jA,mA; jB ,mB⟩のベクトル空
間での演算子にしています。このように考えることで

A2 ⊗ IB |jA,mA; jB ,mB⟩ = ℏ2jA(jA + 1)|jA,mA; jB ,mB⟩

A3 ⊗ IB |jA,mA; jB ,mB⟩ = ℏmA|jA,mA; jB ,mB⟩

IA ⊗B2|jA,mA; jB ,mB⟩ = ℏ2jB(jB + 1)|jA,mA; jB ,mB⟩

IA ⊗B3|jA,mA; jB ,mB⟩ = ℏmB |jA,mA; jB ,mB⟩

となります。IA,B は何も寄与しないのでA2, A3,B
2, B3 がそれぞれの |jA,mA⟩, |jB ,mB⟩にのみ作用します。

　ここまでの情報を簡単にまとめます。|jA,mA⟩, |jB ,mB⟩はそれぞれのベクトル空間 VA, VB で正規直交基底を構

成していて、基底になっています。そのため、この基底ベクトルのテンソル積で作られる |jA,mA; jB ,mB⟩がベク
トル空間 V = VA ⊗ VB での基底ベクトルになります。

　今度は J の作用の仕方が、A,Bの |jA,mA⟩, |jB ,mB⟩への作用の仕方と同じになっている |(jA, jB)j,m⟩という
ベクトルを考えます。J は (11)で触れたようにベクトル空間 V の演算子なので、|(jA, jB)j,m⟩も V にいて、V の

基底になっていると考えられます (J がA,B と同じ作用の仕方をするためには正規直交基底でないといけない)。

|jA,mA; jB ,mB⟩がmA,mB で指定されるのと同じように、|(jA, jB)j,m⟩は j,mで指定されるとします。これを

展開係数を C(jA, jB , j : mA,mB ,m)として基底ベクトル |jA,mA; jB ,mB⟩で展開すると

|(jA, jB)j,m⟩ =
∑

mA,mB

C(jA, jB , j,mA,mB ,m)|jA,mA; jB ,mB⟩ (12)

左辺は基底ベクトル |(jA, jB)j,m⟩、右辺は (2jA + 1)(2jB + 1)個の基底ベクトル |jA,mA; jB ,mB⟩の線形結合に
なっています (こういった事情から (2)の展開が可能になっている)。つまり、基底ベクトルの変換の式になってい

ます。

　この状況は、2次元ベクトル空間での基底ベクトルでの話を見ると分かりやすいです。2次元ベクトル空間でのデ

カルト座標を極座標に変換することを考えます。そのとき基底ベクトルの変換は、デカルト座標での基底ベクトル

を ex, ey、極座標での基底ベクトルを er, eθ とすれば

er = ex cos θ + ey sin θ , eθ = −ex sin θ + ey cos θ

となっています。これは (12)と同じ構造になっているのが分かると思います (右辺が基底ベクトルの線形結合で、

左辺が新しい基底ベクトルのうちのどれか)。

　ベクトル空間の視点から見てきましたが、結局言いたいことは、|(jA, jB)j,m⟩と |jA,mA; jB ,mB⟩が同じ (2jA+

1)(2jB +1)次元のベクトル空間 V にいるということです。そして、(12)がベクトル空間 V = VA ⊗ VB における基

底ベクトルの変換の式と見ることで、話が分かりやすくなります。

　例えば、m = mmax − 1を見てみます ((8)と同じ状況)。和はmA,mB の取れる範囲 −jA,B ≤ mA,B ≤ jA,B に

対して
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|(jA, jB)j,mmax − 1⟩ =
∑

mA,mB

C(jA, jB , j,mA,mB ,mmax − 1)|jA,mA; jB ,mB⟩

= C1|jA, jA − 1; jB , jB⟩+ C ′
1|jA, jA − 2; jB , jB⟩+ · · ·+ C2|jA, jA; jB , jB − 1⟩+ · · ·

と続いています。しかし、クレブシュ・ゴルダン係数にはm = mA +mB のとき以外は 0になるという条件があり

ます。そのため

|(jA, jB)j,mmax − 1⟩ = C1|jA, jA − 1; jB , jB⟩+ C2|jA, jA; jB , jB − 1⟩

となります。これは例えば、3次元での線形結合において、z = 0の制限を入れて

e′ = xex + yey + zez ⇒ e′ = xex + yey + 0 = xex + yey (z = 0)

としているのと同じです。これは 3次元での成分のうち z成分を 0にしているために、x, yによる 2次元に制限さ

れています ((x, y, z) = (x, y, 0) → (x, y))。そうすると、この z = 0での e′に直交するベクトルは 1個しか作れま

せん ((a, b, 0)に直交する (0, 0, c)というベクトルは z = 0の制限のために意味がないので、2次元上で直交するベ

クトル 1個のみ)。

　同様に考えることで、m = mmax−1と選ぶと、(2jA+1)(2jB+1)次元から 2次元に制限された |(jA, jB)j,mmax−1⟩
に直交するベクトルも 1個しかないことになります。後は (8)と同じ計算をしていけば直交しているベクトルが求

まります。

　このようにして、ベクトル空間 V の次元を制限して、直交性から各行の一番左端を求めていったのが、表 1です

(正確には各行の一番左端の状態は、直交している状態の中から J+を作用させると 0になるものを選んでいる)。そ

して、表の各列のベクトルの個数は (12)でのクレブシュ・ゴルダン係数が 0でない項の数と一致しています。これ

は、N 次元において、直交するベクトル (基底ベクトル)の数はN 個、基底ベクトルによる線形結合の項の数はN

個というのに対応した結果です。

　ここまで来ると、jの最小値が jmin = |jA−jB |であることが簡単に分かります。まず、基底ベクトル |(jA, jB)j,m⟩
は (2jA + 1)(2jB + 1)次元のベクトル空間にいることから、|(jA, jB)j,m⟩の j,mで区別される個数はベクトル空

間の次元と合っていなければならないです。よって、|(jA, jB)j,m⟩は (2jA + 1)(2jB + 1)個あります。

　ついでなので、これとは別に、取りあえず表 1は作れているとして、表に現れている |(jA, jB)j,m⟩の個数を数
えてみます。表 1もしくは (4)から分かるように

|(jA, jB)jmax, jmax⟩, . . . , |(jA, jB)jmax,−jmax⟩ : 2jmax + 1個

|(jA, jB)jmax − 1, jmax − 1⟩, . . . , |(jA, jB)jmax − 1,−(jmax − 1)|⟩ : 2(jmax − 1) + 1個

...

|(jA, jB)jmin, jmin⟩, . . . , |(jA, jB)jmin,−jmin⟩ : 2jmin + 1個

という個数になっています。これを全部足せば総数になるので、ただの等差数列の和によって
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(2jmax + 1) + (2(jmax − 1) + 1) + · · · (2jmin + 1)

=

jmax∑
j=jmin

(2j + 1)

=
2jmin + 1 + 2jmax + 1

2
(jmax − jmin + 1)

= j2max − j2min + jmax + jmin + jmax − jmin + 1

= jmax(jmax + 2)− j2min + 1

これが

(2jA + 1)(2jB + 1) = 4jAjB + 2jA + 2jB + 1

= (jA + jB)
2 − j2A − j2B + 2jAjB + 2jA + 2jB + 1

= j2max − j2A − j2B + 2jAjB + 2jmax + 1

= j2max − (jA − jB)
2 + 2jmax + 1

と一致している必要があるので

j2max + 2jmax − j2min + 1 = j2max − (jA − jB)
2 + 2jmax + 1

j2min = (jA − jB)
2

jmin = |jA − jB |

j は 0以上なので、絶対値にしています。というわけで、j の範囲は

jA + jB , jA + jB − 1, . . . , |jA − jB |

となり、上で求めた結果と一致します。
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