
水素型原子

原子核と 1個の電子だけで構成される原子について簡単に見ていきます。シュレーディンガー方程式を重心と相

対位置を使った式に書き換えてるだけです。

　原子核と 1個の電子によって構成される原子を考えます。水素は原子核 (陽子)と電子 1個で構成されるので、

このような原子は水素型原子や水素様原子 (hydrogen-like atom)と呼ばれます。例えば、ヘリウムは電子を 2個

含みますが、電子が 1個のみの状態を作れて (イオン化)、このときは水素型原子 (水素型イオン)となります。

　原子核と電子の間にはクーロン力が発生し、原子核の電荷をZe（eは素電荷、原子番号Zは正の整数）とすれば

V (r) = −αe
Ze2

r

αe は比例定数、rは原子核と電子の間の距離です。水素原子では Z = 1です。原子核を固定すればそのまま「中

心力でのシュレーディンガー方程式」での話になりますが、固定しない場合の式に変えます。ただし、結局は同じ

になります。

　まず、粒子が 2個あるときのシュレーディンガー方程式を作ります。2個の粒子 A1, A2 が独立にいるとき、そ

のハミルトニアンはそれぞれのハミルトニアンを足せばよく

H0 =
p2
1

2m1
+

p2
2

2m2

粒子間に相互作用が働いているなら、対応するポテンシャル V (r1, r2, t)を加えて

H =
p2
1

2m1
+

p2
2

2m2
+ V (r1, r2, t)

r1, r2 は粒子の位置ベクトルです。これを演算子化して、シュレーディンガー方程式に入れれば

iℏ
∂

∂t
ψ(r1, r2, t) =

(
− ℏ2

2m1
∇2

1 −
ℏ2

2m2
∇2

2 + V (r1, r2, t)
)
ψ(r1, r2, t)

∇1,∇2 は r1, r2 での微分です。波動関数 ψ(r1, r2, t)は時間 tで A1 が r1、A2 が r2 にいる確率に対応し、規格

化は

∫ ∞

−∞
d3r1d

3r2|ψ(r1, r2, t)|2 = 1

このようにして、2個の粒子に対するシュレーディンガー方程式と波動関数が与えられます。

　クーロンポテンシャルを使うので、ポテンシャルは粒子間のベクトルに依存しているとして

H =
p2
1

2m1
+

p2
2

2m2
+ V (r1 − r2, t)

2個の粒子を扱うときの力学での発想と同じように、重心を導入します。2個の粒子の重心のベクトルは
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R = (X,Y, Z) =
m1r1 +m2r2
m1 +m2

2個の粒子の間のベクトルは r = r1 − r2 = (x, y, z)とします。R, rの微分に変えます。波動関数 ψ(r1, r2, t)を

ψ(R, r, t)に変えるので（同じ ψを使いますが異なる関数）、微分は

∂

∂x1
ψ(r1, r2) =

∂X

∂x1

∂

∂X
ψ(R, r) +

∂x

∂x1

∂

∂x
ψ(R, r) =

m1

m1 +m2

∂

∂X
ψ(R, r) +

∂

∂x
ψ(R, r)

= (
m1

m1 +m2

∂

∂X
+

∂

∂x
)ψ(R, r)

時間は関係ないので変数から省いて書いています。もう 1回微分して

∂2

∂x21
ψ(r1, r2) =

∂

∂x1

( m1

m1 +m2

∂

∂X
ψ(R, r) +

∂

∂x
ψ(R, r)

)
= (

m1

m1 +m2

∂

∂X
+

∂

∂x
)(

m1

m1 +m2

∂

∂X
+

∂

∂x
)ψ(R, r)

=
(
(

m1

m1 +m2
)2

∂2

∂X2
+ 2

m1

m1 +m2

∂

∂X

∂

∂x
+

∂2

∂x2
)
ψ(R, r)

他の成分も同様なので

∂2

∂y21
ψ(r1, r2, t) = ((

m1

m1 +m2
)2

∂2

∂Y 2
+ 2

m1

m1 +m2

∂

∂Y

∂

∂y
+

∂2

∂y2
)ψ(R, r)

∂2

∂z21
ψ(r1, r2, t) = ((

m1

m1 +m2
)2

∂2

∂Z2
+ 2

m1

m1 +m2

∂

∂Z

∂

∂z
+

∂2

∂z2
)ψ(R, r)

これらから

∇2
1 = (

∂2

∂x21
+

∂2

∂y21
+

∂2

∂z21
) = (

m1

m1 +m2
)2(

∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2
)

+ 2
m1

m1 +m2
(
∂

∂X

∂

∂x
+

∂

∂Y

∂

∂y
+

∂

∂Z

∂

∂z
) + (

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)

∇2
2 では

∂

∂x2
ψ(r1, r2, t) =

∂X

∂x2

∂

∂X
ψ(R, r) +

∂x

∂x2

∂

∂x
ψ(R, r) = (

m2

m1 +m2

∂

∂X
− ∂

∂x
)ψ(R, r)

となるだけなので

∇2
2 = (

∂2

∂x22
+

∂2

∂y22
+

∂2

∂z22
) = (

m2

m1 +m2
)2(

∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2
)

− 2
m2

m1 +m2
(
∂

∂X

∂

∂x
+

∂

∂Y

∂

∂y
+

∂

∂Z

∂

∂z
) + (

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)
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よって

1

2m1
∇2

1 +
1

2m2
∇2

2 =
1

2m1
(

m1

m1 +m2
)2(

∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2
)

+
1

m1 +m2
(
∂

∂X

∂

∂x
+

∂

∂Y

∂

∂y
+

∂

∂Z

∂

∂z
) +

1

2m1
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)

+
1

2m2
(

m2

m1 +m2
)2(

∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2
)

− 1

m1 +m2
(
∂

∂X

∂

∂x
+

∂

∂Y

∂

∂y
+

∂

∂Z

∂

∂z
) +

1

2m2
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)

=
1

2

( 1

m1
(

m1

m1 +m2
)2 +

1

m2
(

m2

m1 +m2
)2
)
(
∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2
)

+
1

2
(
1

m1
+

1

m2
)(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)

第 1項は、全質量M = m1 +m2 を使って

1

m1
(

m1

m1 +m2
)2 +

1

m2
(

m2

m1 +m2
)2 =

m1 +m2

(m1 +m2)2
=

1

m1 +m2
=

1

M

第 2項では

1

µ
=

1

m1
+

1

m2
(µ =

m1m2

m1 +m2
)

として、換算質量 µを使えば

1

2m1
∇2

1 +
1

2m2
∇2

2 =
1

2M
(
∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2
) +

1

2µ
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)

となり、Rでの ∇2
R と rでの ∇2

r に分離した形になります。Rでの質量は 2個の粒子による全質量、rでは換算

質量になっています。これによって、シュレーディンガー方程式は

iℏ
∂

∂t
ψ(R, r, t) = (− ℏ2

2M
∇2

R − ℏ2

2µ
∇2

r + V (r, t))ψ(R, r, t)

ここでは時間依存性はないとして

(− ℏ2

2M
∇2

R − ℏ2

2µ
∇2

r + V (r))ψ(R, r) = Eψ(R, r)

左辺はR, rでのナブラなので、M,Rと µ, rによる運動量と対応しています。左辺の第 1項は、Rの運動量は

M
d

dt
R = (m1 +m2)

m1v1 +m2v2

m1 +m2
= p1 + p2 = P (v1 =

dr1
dt

, v2 =
dr2
dt

)
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となっていることから

− ℏ2

2M
∇2

R ⇔ P 2

2M
=

(p1 + p2)
2

2M

第 2項は、µと rによる運動量 p = µv (v = dr/dt)によって

− ℏ2

2µ
∇2

r ⇔ p2

2µ
=

1

2µ
(µ(

p1

m1
− p2

m2
))2 =

1

2µ
(
m2p1

m1 +m2
− m1p2

m1 +m2
)2

と対応します。実際に、運動エネルギーはRと rを使うと (力学の「実験室系と重心系」参照)

1

2
m1|v1|2 +

1

2
m2|v2|2 =

1

2
(m1 +m2)|

dR

dt
|2 + 1

2
µ|dr
dt

|2

=
1

2(m1 +m2)
|(m1 +m2)

dR

dt
|2 + 1

2µ
|µdr
dt

|2

=
P 2

2(m1 +m2)
+

p2

2µ

と書けます。

　重心による項は P = p1 + p2 = 0 となる重心系を選べば消せます。もしくは、V (r) なので、波動関数を

ψR(R)ψr(r)と分解することで、R, rを分離して

−ψr(r)
ℏ2

2M
∇2

RψR(R)− ψR(R)
ℏ2

2µ
∇2

rψr(r) + V (r)ψR(R)ψr(r) = EψR(R)ψr(r)

− 1

ψR(R)

ℏ2

2M
∇2

RψR(R) = −(− 1

ψr(r)

ℏ2

2µ
∇2

rψr(r) + V (r)− E)

と書けるので、定数を ER として

− ℏ2

2M
∇2

RψR(R) = ERψR(R)

(− ℏ2

2µ
∇2

r + V (r))ψr(r) = Erψr(r) (Er = E − ER)

ψRではポテンシャルなしのシュレーディンガー方程式でしかないので、ψr を求めれば十分になります。というわ

けで、必要なシュレーディンガー方程式は重心系とすることにして

(− ℏ2

2µ
∇2

r − αe
Ze2

r
)ψ(r) = Eψ(r) (1)

これは原子核が静止しているとした場合と同じで、「中心力でのシュレーディンガー方程式」,「波動関数の動径部

分」で求めています。また、水素とすると粒子は陽子 (水素の原子核は陽子 1個のみ)と電子なので、µは陽子の

質量mp ≃ 1.67× 10−27[kg]と電子の質量me ≃ 9.11× 10−31[kg]から

µ =
mpme

mp +me
= me

1

1 +me/mp
≃ me (

me

mp
=

9.11

1.67
× 10−4 ≃ 5.5× 10−4)
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と近似できるので、電子の質量だけ考えれば十分になっています。

　原子核と電子の相対距離のベクトル rによるシュレーディンガー方程式 (1)を解くと、波動関数とエネルギー固

有値は極座標 (r, θ, ϕ)で

ψnlm(r, θ, ϕ) = Rn,l(ρ)Y
m
l (θ, ϕ) (ρ =

2

na0
r, a′0 =

1

αe

ℏ2

e2µ
)

En = − µ

2ℏ2
(αeZe

2)2
1

n2
= −αeZ

2e2

2a′0
= − ℏ2Z2

2a′20 µ

1

n2
(2)

µが電子の質量のときの a′0 = a0 ≃ 5.3 × 10−11[m]はボーア半径です。波動関数 ψnlm は n, l,mによって状態が

指定され、それぞれ

n = 1, 2, . . .

l = 0, 1, 2, . . . , n− 1

m = 0,±1,±2, . . . ,±l (−l ≤ m ≤ l)

nを主量子数 (principal quantum number)、l を方位量子数 (angular momentum quantum number, azimuthal

quantum number)、mを磁気量子数 (magnetic quantum number)と言い、nはエネルギーの値、lは角運動量の

大きさ、mは角運動量の z成分を与えます (「角運動量演算子」参照)。これらから、1つのエネルギー Enに対し

て n2 重に縮退しています。

　 n, lで指定される状態には表記が与えられていて、nの値はそのまま使い、それと lが 0なら s、1なら p、2な

ら d、3なら f、4からは gからのアルファベット順を合わせたものです。この表記を使うと、例えば n = 4, l = 3

までの状態は

n l = 0 l = 1 l = 2 l = 3

4 4s 4p 4d 4f

3 3s 3p 3d

2 2s 2p

1 1s

また、これらに軌道をくっつけて 1s軌道 (orbit)、2s軌道と言ったりもします。他にも、n = 1ではK殻 (K-shell)、

n = 2では L殻としてアルファベット順に殻を付けた呼び方もされます。

　 Rn,l は

Rn,l(ρ) =

√
4

(na′0)
3

(n− l − 1)!

(n+ l)!n
e−ρ/2ρlL2l+1

n−l−1(ρ)

ラゲール陪多項式 Lα
β は

Lα
β(x) =

β∑
k=0

(−1)k

k!

(α+ β)!

(k + α)!(β − k)!
xk

球面調和関数 Y m
l は
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Y m
l (θ, ϕ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ

ルジャンドル陪関数 Pm
l はルジャンドル多項式

Pl(x) =
1

2nn!

dl

dxl
(x2 − 1)l

から

Pm
l (x) = (1− x2)m/2 d

m

dxm
Pl(x)

これらに l,m, nの値を入れれば具体的な波動関数が求まります。いろいろなとこに具体的な形は図付きで載って

いるのでそれらは割愛します。

　水素原子 (Z = 1)として n = 1の場合を見ていきます。エネルギーは

E1 = − µ

2ℏ2
(αee

2)2

n = 1では l = 0,m = 0しかないので縮退していません。µを電子の質量meで近似し、電磁気の単位に SIを使っ

て値を求めると

µ

2ℏ2
(αee

2)2 =
1

2ℏ2
me(

e2

4πϵ0
)2 =

1

2
mec

2(
e2

4πϵ0ℏc
)2 ≃ 1

2
mec

2(
1

137
)2 ≃ −2.19× 10−18[J] ≃ −13.6[eV]

c ≃ 3× 108[m · s−1]は光速、e2/4πϵ0ℏcは微細構造定数、Jはジュールです。ジュールと電子ボルト eVは

1[eV] ≃ 1.602× 10−19[J].

となっています。微細構造定数に書き直しているのは単位系とは無関係に 1/137になって便利だからです。

　これから、−13.6[eV]が水素原子の基底状態 (一番エネルギーの低い状態)のエネルギーとなります。言い換え

れば、基底状態の電子は−13.6[eV]のエネルギーで束縛されているということなので、13.6[eV]以上のエネルギー

を与えれば水素原子から電子を弾き飛ばせます（エネルギーが正になるので引力による負のポテンシャルを超え

られる）。

　 n = 1の波動関数は

ψ100(r) = R1,0(ρ)Y
0
0 (θ, ϕ) =

√
1

πa′30
e−r/a′

0

R1,0(ρ) =

√
4

a′30
e−ρ/2L1

0(ρ) =

√
4

a′30
e−ρ/2 =

√
4

a′30
e−r/a′

0 (L1
0(ρ) = 1)

Y 0
0 (θ, ϕ) =

√
1

4π
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これで重要なのは |ψ100|2が r = 0で有限の値になっていることで、電子が原子核と同じ位置にいる確率が 0では

ないです。一方で、原子核からの位置 r +∆rにいる確率 (半径 rの球と半径 r +∆rの球の間にいる確率)は、波

動関数は 3次元空間の確率密度なので rと r +∆rの間の微小領域にいる確率が

|ψnlm(r, θ, ϕ)|2∆x∆y∆z

となっていることから、D(r)を rのみ残した確率密度として確率をD(r)∆rとすれば

|ψ100(r)|2∆x∆y∆z = |ψ100(r)|2r2 sin θ∆r∆θ∆ϕ

⇒ D(r)∆r = ∆r

∫ π

0

dθ

∫ 2π

0

dϕ|ψ100(r)|2r2 sin θ

= r2|ψ100(r)|2∆r
∫ π

0

dθ

∫ 2π

0

dϕ sin θ

= 4πr2|ψ100(r)|2∆r

=
4

a′30
r2e−2r/a′

0∆r

これの極値は

0 =
4

a′30

d

dr
r2e−2r/a′

0 =
4

a′30
e−2r/a′

0(2r − 2

a′0
r3)

から r = a′0 のときで、この地点で確率の最大値を与えます。なので、µ = me で近似すれば、電子はボーア半径

の地点にいる確率が一番高くなっていると言えます。このように、波動関数そのものの確率密度 |ψ100(r)|2 では
r = 0で最大、rと r+∆rの間にいる確率密度D(r)では r = a′0で最大となっています。r = 0で最大で、位置の

増加で急激に減少する分布だと電子の位置が限定されすぎて使いづらいので、D(r)がよく出てきます。

　電子の位置の期待値はボーア半径からズレています。位置 rの期待値は

< r >=

∫ ∞

0

dr r2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ ψ∗
100(r)rψ100(r)

=

∫ ∞

0

dr r3|ψ100(r)|2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ

=
4

a′30

∫ ∞

0

dr r3e−2r/a′
0

=
4

a′30
(
a′0
2
)4

∫ ∞

0

dr′ r′3e−r′ (r′ =
2

a′0
r)

積分は部分積分から

∫ ∞

0

dx x3e−x = −[x3e−x]∞0 + 3

∫ ∞

0

dx x2e−x = 3

∫ ∞

0

dx x2e−x = −6

∫ ∞

0

dxe−x = 6

なので
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< r >=
3

2
a′0

となり、期待値はボーア半径からズレています。

　水素原子は特有の光 (電磁波、光子)の吸収、放出 (発光)を行っています。それは異なるエネルギーの状態への

変化時に起きていると説明でき (ある 1つの状態にいるだけなら光の吸収、放出は起きず、別の状態へ変化すると

きに起きる)、その光の振動数は今の nで指定されるエネルギーの差で与えられます。nと n′でのエネルギーの差

は n < n′ として

∆Eγ = |En| − |En′ | = ℏ2

2a′20 µ
(
1

n2
− 1

n′2
) =

µ

2ℏ2
(αee

2)2(
1

n2
− 1

n′2
) (3)

∆Eγ のエネルギーが与えられると nから n′の状態へ、放出するなら n′から nの状態へと変化します。∆Eγ を光

子のエネルギー hν (h = 2πℏ, ν は振動数)に対応させることで

ν =
µ

4πℏ3
(αee

2)2(
1

n2
− 1

n′2
)

水素原子にこの振動数に対応する光を当てればエネルギーが nから n′に上がるために光の吸収が起き、n′から n

へエネルギーが下がるならこの振動数の光が水素原子から放出されます。このように、可能な定常状態のエネル

ギーが離散的になっているために、特定の振動数による光の吸収と放出が起きます。例えば、n = 1, n′ = 2のと

きでは

∆Eγ =
µ

2ℏ2
(αee

2)2(1− 1

4
) ≃ 3

4

me

2ℏ2
(
e2

4πϵ0
)2 ≃ 1.64× 10−18[J] ≃ 10.2[eV]

対応する振動数と波長 λ = c/ν は

ν =
1.64× 10−18[J]

h
=

1.64× 10−18[m2 · kg · s−2]

6.63× 10−34[m2 · kg · s−1]
= 2.47× 1015[s−1]

λ =
c

ν
≃ 3× 108[m · s−1]

2.47× 1015[s−1]
= 1.21× 10−7[m] = 121[nm] (1[nm] = 10−9[m])

nmはナノメートルです。吸収、放出での振動数を横軸として図にしたものを原子のスペクトル (spectrum)と呼

びます。太陽光をプリズムに通して紙に映すと 7色の帯が並んで現れ、その帯をスペクトルと呼んだことからこ

の名称になっています。今の場合では振動数に対して連続的でなく離散的なので、線スペクトル (line spectrum)

と言われます（各振動数に対して飛び飛びの線になるため）。ちなみに、スペクトルはフランス語 spectreのカタ

カナ表記です。

　 n = 1のときに n′ との差から作られる水素原子のスペクトルはライマン系列 (Lyman series)、n = 2ではバ

ルマー系列 (Balmer series)、n = 3ではパッシェン系列 (Paschen series)、n = 4ではブラケット系列 (Brackett

series)と呼ばれます。例えば、バルマー系列が可視光の領域になっていて、E2 ≃ −3.4[eV]と En′ (n′ > 2)との

差で与えられます。

　最後に、歴史的な話をしておきます。1885年に実験結果からの経験則としてバルマー (Balmer)が水素原子のス

ペクトルの振動数の関係式を見つけ、1890年にリュードベリ (Rydberg)がより一般的な関係式として

1

λ
=
ν

c
= Ry(

1

n
− 1

n′
) , Ry = 109677.583[cm−1]
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を見つけました。これはリュードベリの公式と呼ばれ、シュレーディンガー方程式による結果と同じ形です。Ry

をリュードベリ定数と言い、電子の質量を無視した時はR∞と表記されます。(3)でのリュードベリ定数部分に値

を入れれば

ν

c
=

µ

4πℏ3c
(αee

2)2 ≃ me

4π

c

ℏ
(

e2

4πϵ0ℏc
)2 ≃ 9.11× 10−31

4π

3× 108

1.05× 10−34
(

1

137
)2 ≃ 1.1× 107[m−1]

となるので、大体同じような値になっています。もっと詳細な値を使うともう少し値が近づきます。また、リュー

ドベリ定数はエネルギーの係数を指していることもあります。エネルギーは

En = − µ

2ℏ2
(αeZe

2)2
1

n2
≃ 13.6[eV]× 1

n2

なので、13.6[eV]がリュードベリ定数となります。もしくは、区別をつけてリュードベリエネルギーと言ってたり

もします。

　ボーアの原子模型にも触れておきます。1911年にガイガーとマースデンの実験からラザフォードは原子核の存

在を示し、原子核の周りを電子が動いているという古典的な原子模型が作られます。しかし、これではリュードベ

リの公式を説明できませんでした (古典的な電子の円運動で放出される光のエネルギーは連続的)。これに対して

ボーアは、プランクが示したエネルギーは離散的な値を持つということと、アインシュタインによる光のエネル

ギーは hν であるということを合わせました。つまり、水素原子における電子は離散的なエネルギー Enを持つと

し、水素原子から放出される光には hν = En −En′ という関係があると考えました。そして、ラザフォードの原

子模型から離散的なエネルギーを導出するために、電子は円運動しているとして、その角運動量 Lは離散的と仮

定し

L = mvr = nℏ (n = 1, 2, 3, . . .)

と与えました。mは電子の質量、vは速度、rは円軌道の半径です。

　というわけで、ボーアの仮定のもとで原子核の周りを電子が円運動しているとして、エネルギーを求めます。運

動は古典的な力学に従うとして、クーロンポテンシャルによる引力と遠心力のつり合いから

αe
e2

r2
=
mv2

r

これと角運動量の仮定を合わせれば

v = αe
e2

mvr
= αe

e2

L
= αe

e2

nℏ

これによって運動エネルギーは

T =
1

2
mv2 =

m

2ℏ2
(αee

2)2
1

n2

rは角運動量から r = nℏ/mvなので

r =
nℏ
mv

=
1

αee2
n2ℏ2

m

9



となり、位置も離散的になります。これの n = 1がボーア半径です。クーロンポテンシャルに入れれば

−αe
e2

r
= −m

ℏ2
(αee

2)2
1

n2

よって、エネルギーは

E =
1

2
mv2 − αe

e2

r
=

m

2ℏ2
(αee

2)2
1

n2
− m

ℏ2
(αee

2)2
1

n2
= − m

2ℏ2
(αee

2)2
1

n2

となり、(2)と一致します。一致しますが、原子核の周りを電子が円運動しているというイメージは現在の量子力

学では正しくないです (現在では原子核周辺の確率分布としてのイメージ)。

　このようにして、ボーアの原子模型は水素原子のスペクトルを説明できましたが、いくつも問題を抱えていま

した。しかし、水素原子のエネルギーが離散化されているという結果は、ゾンマーフェルトの量子化条件に一般

化され、前期量子論から量子力学への発展のきっかけとなりました。

・補足

　「中心力でのシュレーディンガー方程式」では特殊関数による解からエネルギーを求めていますが、ここでは

特殊関数を使わずに求めます。ただし、角運動量演算子の固有値は求まっているとします。

　極座標でのシュレーディンガー方程式は

(
ℏ2

r2
∂

∂r
(r2

∂

∂r
) +

ℏ2

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

ℏ2

r2 sin2 θ

∂2

∂ϕ2
− 2µV (r))ψ(r) = −2µEψ(r)

r微分は

1

r2
( ∂
∂r

(r2
∂

∂r
)
)
ψ = (

∂2

∂r2
+

2

r

∂

∂r
)ψ = (

∂2

∂r2
+

2

r

∂

∂r
− 1

r2
+

1

r2
)ψ = (

∂2

∂r2
+

2

r

∂

∂r
+ (

∂

∂r

1

r
) +

1

r2
)ψ

=
∂2

∂r2
ψ +

1

r

∂

∂r
ψ +

∂

∂r
(
1

r
ψ) +

1

r2
ψ

= (
∂

∂r
+

1

r
)(
∂ψ

∂r
+

1

r
ψ)

= (
∂

∂r
+

1

r
)(
∂

∂r
+

1

r
)ψ

と書けるので

p̂r = −iℏ( ∂
∂r

+
1

r
) , p̂2r = −ℏ2

r2
∂

∂r
(r2

∂

∂r
)

このように定義すると、rとの交換関係が

[r, p̂r] = −iℏ[r, ∂
∂r

+
1

r
] = −iℏ(r ∂

∂r
+ 1− (

∂r

∂r
+ r

∂

∂r
+ 1)) = iℏ

となるので、位置演算子と運動量演算子の交換関係を満たします。このため、p̂r は rに対応する運動量演算子と

言えます。
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　角運動量演算子 L̂は

L̂2 = −ℏ2
( 1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

)

となっているので

ℏ2

r2
∂

∂r
(r2

∂

∂r
) +

ℏ2

r2
(

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2
= −p̂2r −

L̂2

r2

これによって、クーロンポテンシャルでのシュレーディンガー方程式は

(
p̂2r
2µ

+
L̂2

2µr2
− αe

Ze2

r
)ψ(r) = Eψ(r)

L̂2 の固有値と固有関数 Y (θ, ϕ)は

L̂2Y (θ, ϕ) = ℏ2l(l + 1)Y (θ, ϕ) (l = 0, 1, 2, . . .)

と求まっているとすれば、シュレーディンガー方程式は

(
p̂2r
2µ

+
ℏ2l(l + 1)

2µr2
− αe

Ze2

r
)ψ(r) = Eψ(r)

となります。

　左辺をハミルトニアン演算子 Ĥr として

Ĥr =
ℏ2

2µ
(
p̂2r
ℏ2

+
l(l + 1)

r2
− αe

2µZe2

ℏ2r
) =

ℏ2

2µ
(
p̂2r
ℏ2

+
l(l + 1)

r2
− 2Z

a0r
) (a0 =

ℏ2

αee2µ
)

a′0 と書くと煩わしかったので、a0 と書いていますが質量は µの場合です。括弧部分を

b̂†b̂+ c = (− i

ℏ
p̂r +A(r))(

i

ℏ
p̂r +A(r)) + c

という形で書けないか試します。cは定数です。そうすると

(− i

ℏ
p̂r +A(r))(

i

ℏ
p̂r +A) =

p̂2r
ℏ2

+A2(r) +
i

ℏ
A(r)p̂r −

i

ℏ
p̂rA(r) =

p̂2r
ℏ2

+A2(r) +
i

ℏ
[A(r), p̂r]

から

A2(r) +
i

ℏ
[A(r), p̂r] + c =

l(l + 1)

r2
− 2Z

a0r

1/rと p̂r の交換関係は
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[
1

r
, p̂r] =

1

r
p̂r − p̂r

1

r
= −iℏ

(1
r
(
∂

∂r
+

1

r
)− (

∂

∂r
+

1

r
)
1

r

)
= − iℏ

(1
r

∂

∂r
+

1

r2
− (− 1

r2
+

1

r

∂

∂r
+

1

r2
)
)

=
−iℏ
r2

なので、1/r2 を交換関係部分から作れます。これを利用するために A(r)は 1/rの関数と仮定して

(
c1
r

+ c2)
2 +

i

ℏ
[
c1
r

+ c2, p̂r] = (
c1
r

+ c2)
2 +

ic1
ℏ

[
1

r
, p̂r] = (

c1
r

+ c2)
2 +

c1
r2

=
c21 + c1
r2

+ c22 +
2c1c2
r

c1, c2 は定数です。これから

c1(c1 + 1)

r2
+

2c1c2
r

+ c22 + c =
l(l + 1)

r2
− 2Z

a0r

なので

c1 = −(l + 1) , c2 =
Z

a0(l + 1)
, c = − Z2

a20(l + 1)2

ついでに、後のための係数と無次元にするための a0 をくっつけて

b̂ =
a0√
2
(
i

ℏ
p̂r +A(r)) =

a0√
2
(
i

ℏ
p̂r −

l + 1

r
+

Z

a0(l + 1)
)

b̂† =
a0√
2
(− i

ℏ
p̂r −

l + 1

r
+

Z

a0(l + 1)
)

これらを使うと

b̂†b̂ =
a20
2
(
p̂2r
ℏ2

+
l(l + 1)

r2
− 2Z

a0r
+

Z2

a20(l + 1)2
) =

2µ

ℏ2
a20
2
Ĥr(l) +

a20
2

Z2

a20(l + 1)2
=
a20µ

ℏ2
Ĥr(l) +

Z2

2(l + 1)2

Ĥr(l) =
ℏ2

a20µ
(b̂†b̂− Z2

2(l + 1)2
)

となります。

　 b̂b̂† では

b̂b̂† =
a20
2
(
i

ℏ
p̂r +A)(− i

ℏ
p̂r +A) =

a20
2
(
p̂2r
ℏ2

+A2(r)− i

ℏ
[A(r), p̂r])

=
a20
2
(
p̂2r
ℏ2

+A2(r)− i

ℏ
[
−(l + 1)

r
, p̂r])

=
a20
2
(
p̂2r
ℏ2

+
(l + 1)2

r2
− 2Z

a0r
+

Z2

a20(l + 1)2
+
l + 1

r2
)

=
a20
2
(
p̂2r
ℏ2

+
(l + 1)(l + 2)

r2
− 2Z

a0r
+

Z2

a20(l + 1)2
)

=
a20µ

ℏ2
Ĥr(l + 1) +

Z2

2(l + 1)2

12



これから、b̂と b̂† の交換関係は

[b̂, b̂†] = b̂b̂† − b̂†b̂ =
a20µ

ℏ2
Ĥr(l + 1) +

Z2

2(l + 1)2
− a20µ

ℏ2
Ĥr(l)−

Z2

2(l + 1)2
=
a20µ

ℏ2
(Ĥr(l + 1)− Ĥr(l))

これを使えば、ハミルトニアン演算子との交換関係は

[b̂, Ĥr(l)] =
ℏ2

a20µ
[b̂, b̂†b̂− Z2

2(l + 1)2
]

=
ℏ2

a20µ
[b̂, b̂†b̂]

=
ℏ2

a20µ
b̂†[b̂, b̂] +

ℏ2

a20µ
[b̂, b̂†]b̂

=
ℏ2

a20µ
[b̂, b̂†]b̂

b̂Ĥr(l)− Ĥr(l)b̂ = (Ĥr(l + 1)− Ĥr(l))b̂

b̂Ĥr(l) = Ĥr(l + 1)b̂

となります。

　そうすると、ハミルトニアン演算子の固有値 E と固有状態 |E; l⟩において

Ĥr(l + 1)b̂|E; l⟩ = b̂Ĥr(l)|E; l⟩ = Eb̂|E; l⟩

となるので、b̂|E; l⟩は Ĥr(l+ 1)の固有値 E の固有状態です。固有値は変わらず lから l+ 1でのハミルトニアン

演算子の固有状態になっていることから、b̂は固有状態の lを l + 1に変える演算子と言えます。そして、　ハミ

ルトニアン演算子は

Ĥr =
ℏ2

2µ
(
p̂2r
ℏ2

+
l(l + 1)

r2
− αe

2µZe2

ℏ2r
)

となっているために、第 2項と第 3項の和が任意の rで E を超えてしまうと、粒子が存在できなくなります (負

の運動エネルギーになってしまう)。このため、lには上限があるはずなので、それを Lmax とすれば

b̂|E;Lmax⟩ = 0

この制限から
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0 = ⟨E;Lmax|b̂†b̂|E;Lmax⟩

= ⟨E;Lmax|(
a20µ

ℏ2
Ĥr +

Z2

2(Lmax + 1)2
)|E;Lmax⟩

= ⟨E;Lmax|(
a20µ

ℏ2
E +

Z2

2(Lmax + 1)2
)|E;Lmax⟩

E = − ℏ2Z2

2a20µ

1

n2
(n = Lmax + 1)

= − µ

2ℏ2
(αeZe

2)2
1

n2

よって、エネルギーは整数 n = 1, 2, . . .によって与えられ、lは 0 ≤ l ≤ n− 1の範囲となります。
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