
量子力学の仮定

量子力学を作るための数学の準備です。量子力学の有名な実験結果 (2重スリットとか)と、その一般的な解釈に
ついては知っているとしています。
「シュレーディンガー方程式とハイゼンベルク方程式」で続きの話をしています。

・ブラケット
・直交、完全
・線形演算子
・交換関係、反交換関係
・c数、q数
・固有値、固有状態
・エルミート演算子
・確率
・ユニタリー演算子
・波動関数

　力学は運動の法則を仮定することで作られているように、量子力学もいくつかの仮定によって作られています。
細かいことや解釈に触れると厄介なので飛ばして、簡単に言えば

(i) 状態はヒルベルト空間の単位ベクトルに対応させる

(ii) 観測可能量はヒルベルト空間のエルミート演算子に対応させる

(iii) 観測可能量が観測される確率は状態の内積から求まる

(iv) 状態の時間発展にはハミルトニアンによるユニタリー演算子を使う

というものです ((iii)は準備が必要なので、かなり雑です)。ただし、力学の運動の法則のような教科書的な言い
回しがないので、仮定の仕方は人によって異なります。また、これらの仮定から数学は作れますが具体的な計算は
できなく、量子条件を加える必要があります。量子条件はここでは省いて、「シュレーディンガー方程式とハイゼ
ンベルク方程式」で触れます。
　いくつかの単語の説明を先にしておきます。
　ここで言うヒルベルト空間は、有限次元、もしくは無限次元の可分な複素ヒルベルト空間です。単純に言えば、
無限個の和であろうと重ね合わせの原理が保証されている複素ベクトル空間です。実用上で困らない言い方をす
れば、ヒルベルト空間を使うのは、フーリエ級数展開 (フーリエ変換)と線形代数が使えるからです。
　状態 (state)は抽象化された単語で曖昧な部分もありますが、例えば力学での粒子の運動と同じ意味です。なの
で、力学で言えば、ある時刻での状態は位置と運動量 (速度)によって指定できます。これは運動の第二法則 (運動
方程式)によるものです。というわけで、状態は扱う対象の知りたい何かしらの情報を持っているもので、量子力
学はそれをヒルベルト空間の単位ベクトルとします。
　観測可能量 (observable, オブザーバブル)は量子力学において測定可能な量のことで、ここでは観測量と言って
しまいます。一般的に物理量 (エネルギーや運動量など)と呼ばれるものが観測量です。わざわざ新しく単語を作っ
ているのは、実験での測定値との区別のためです。
　仮定 (i),(ii)は使う数学のことを言っているので、それから見ていきます。

• ブラケット
　ヒルベルト空間は複素ベクトル空間なので、ベクトル空間と同じ話 (線形代数)が使えます。しかし、量
子力学ではベクトルの表記に独特なものを使います。それは、ディラックによって導入されたブラケット
(bracket)と呼ばれるものです。ブラ (bra, ブラベクトル)は

⟨ϕ|

ケット (ket, ケットベクトル)は

|ϕ⟩

1



と表記され、合わせてブラケットです。単にベクトルに対してこのような記号を使っているだけだと思えば
いいです。ブラやケットのことをベクトルと呼んでいきます。

　ちなみに、数学ではブラケット表記を使う理由がないので、ほとんど使われていないです。また、ブラケッ
トの数学との対応は「ヒルベルト空間」を見てください。

　ベクトルなので和とスカラー倍を定義できて、α, β をスカラー (複素数)として

(α+ β)|ϕ⟩ = α|ϕ⟩+ β|ϕ⟩ , α(|ϕ⟩+ |ψ⟩) = α|ϕ⟩+ α|ψ⟩

と表記されます (ブラでも同様)。また、α|ϕ⟩ = |ϕ⟩αのようにスカラーとは交換できます。ゼロベクトルに
対応するものを |0⟩と表記すれば

|ϕ⟩+ |0⟩ = |ϕ⟩

と書けます。太字で |0⟩としているのは、|0⟩を基底状態や真空と定義することが多いからです (物理では真
空のノルムは 1と定義され、ゼロベクトルではない)。ただし、量子力学ではゼロベクトルは対象に入らな
いので、ゼロベクトルのことは無視していいです。他にも表記として

|αϕ⟩ = α|ϕ⟩ , |ϕ⟩+ |ψ⟩ = |ϕ+ ψ⟩

というのもありますが、紛らわしくなるのであまり使わない方がいいです。

　気を付ける点は、ブラとケットは別のベクトル空間で定義されているために

⟨ϕ|+ |ψ⟩

このようなブラとケットの和は定義されていません。

　内積はブラとケットを合わせて

⟨ϕ|ψ⟩

と書かれます。これは分配法則

⟨ϕ|(|ψ1⟩+ |ψ2⟩) = ⟨ϕ|ψ1⟩+ ⟨ϕ|ψ2⟩ , (⟨ψ1|+ ⟨ψ2|)|ϕ⟩ = ⟨ψ1|ϕ⟩+ ⟨ψ2|ϕ⟩

に従います。注意ですが、数学では内積を ⟨ϕ, ψ⟩と表記することがありますが、ここでの内積の定義とは異
なったものです。物理の量子力学の本だけならこの違いを気にする必要はありませんが、数学よりの本を読
むときは注意する必要があります。

　複素ベクトル空間なので内積を実数とする必要がなく、複素数になってもいいです。このため複素共役「∗」
によって

⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗

という関係を持たせます (⟨ψ|ϕ⟩∗ = (⟨ψ|ϕ⟩)∗)。これは内積を定義するための条件の 1つである対称性のこと
です。

　複素数 αによって |αϕ⟩という表記を使ったとき、ブラとケットどちらに αがいるかで複素共役の取り方
が変わり
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⟨ϕ|αψ⟩ = α⟨ϕ|ψ⟩ , ⟨αϕ|ψ⟩ = α∗⟨ϕ|ψ⟩

実際に

⟨αϕ|ψ⟩ = (⟨ψ|αϕ⟩)∗ = (α⟨ψ|ϕ⟩)∗ = α∗⟨ψ|ϕ⟩∗ = α∗⟨ϕ|ψ⟩

なので、成立しています。また、内積を取るときの言い方の問題でしかないですが、ベクトルの内積を取る
ときの言い方に合わせて、|ϕ⟩と α|ψ⟩の内積を取るといったとき、|ϕ⟩がブラで α|ψ⟩がケットなら α⟨ϕ|ψ⟩
となって、α1|ψ1⟩+ α2|ψ2⟩とでは

⟨ϕ|(α1|ψ1⟩+ α2|ψ2⟩) = α1⟨ϕ|ψ1⟩+ α2⟨ϕ|ψ2⟩

逆に、|ϕ⟩と α|ψ⟩の内積を取るといったとき、α|ϕ⟩をブラにして |ψ⟩をケットとする内積は α∗⟨ϕ|ψ⟩とな
り、α1|ϕ1⟩+ α2|ϕ2⟩となら

(α∗
1⟨ϕ1|+ α∗

2⟨ϕ2|)|ψ⟩ = α∗
1⟨ϕ1|ψ⟩+ α∗

2⟨ϕ2|ψ⟩

このように複素数がブラとケットのどちらをスカラー倍しているかで複素共役の取り方が変わります。

　同じベクトル同士の内積は 0以上というのは通常通りで

⟨ϕ|ϕ⟩ ≥ 0

0になるのはゼロベクトルに対応する |0⟩のときです。量子力学で見ることはほぼないですが、0以上を外し
て定義する場合もあります (例えば場の量子論でのゲージ場の話で出てくる)。

　ノルム (norm)は、これの正の平方根

√
⟨ϕ|ϕ⟩

として定義します (ユークリッド空間でのノルムの定義の仕方と同じ)。単位ベクトルならノルムは 1です。
⟨ϕ|ϕ⟩を自乗ノルムと言ったりもします。ノルムの記号を

||ϕ⟩| =
√
⟨ϕ|ϕ⟩

と表記します。注意ですが、絶対値と同じ | |を使うので、複素数 ⟨ψ|ϕ⟩の絶対値

|⟨ψ|ϕ⟩| =
√

⟨ψ|ϕ⟩∗⟨ψ|ϕ⟩ =
√
⟨ϕ|ψ⟩⟨ψ|ϕ⟩

との区別に気をつけてください。||ϕ⟩|はベクトルのノルム、|⟨ψ|ϕ⟩|は複素数の絶対値です。
　ブラとケットはベクトルで、ベクトルは行列表記ができます。なので、行列と対応させられます (線形演
算子の項参照)。N 次元ベクトルと同じように、ブラは 1×N 行列、ケットはN × 1行列とみなします。例
えば、3次元なら、ケットを
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|ϕ⟩ ⇒

 a
b
c


とします。細かいことですが、等号でなく「⇒」にしているのは、ベクトルの成分が基底の選択で変わるの
と同じ理由からです (デカルト座標 (x, y, z)と極座標 (r, θ, ϕ)で成分が変わるのと同じ)。

　行列の計算規則に合わせるなら、1× 3行列と 3× 1行列の積にするので、ブラを

⟨ϕ| ⇒ (a∗ b∗ c∗)

とすることで、ブラとケットによる内積は

⟨ϕ|ϕ⟩ ⇒ (a∗ b∗ c∗)

 a
b
c

 = a∗a+ b∗b+ c∗c

となります。そして、転置と複素共役を同時に行う記号「†」(ダガー)を定義すれば

|ϕ⟩† = ⟨ϕ| ⇒ (a∗ b∗ c∗)

「†」はエルミート共役の記号で、行列では転置して複素共役を取れという意味です。なので、転置を考慮
したときのブラとケットの間は

|ϕ⟩† = ⟨ϕ|

となります。「†」は転置の意味が必要ないなら複素共役に置き換わります。特に内積はただの複素数なので、
複素共役の意味しか持っていません。ただし、複素共役だけであっても「†」を使っている場合もあります。
　このようにして量子力学ではヒルベルト空間のベクトルをブラケットで表記し、ノルムが 1のブラケット
を状態 (state)に対応させます。状態を状態ベクトルとも呼びます。状態の集まりに対してその各状態を、状
態A,B,C, . . .とすると、ブラケットはその状態に対応して、ケットなら |A⟩, |B⟩, |C⟩、ブラなら ⟨A|, ⟨B|, ⟨C|
というように使われます。このことから、状態を表すベクトル空間と言えるので、状態空間と呼ぶこともあ
ります。

• 直交、完全
　線形代数の話をブラケットを使ってします。無限次元としますが、有限次元と思っていいです。2つのベ
クトルが直交しているかは内積によって定義されていたように、ある状態 |ϕn⟩ (n = 1, 2, . . .)の直交性を

⟨ϕm|ϕn⟩ = δmn

と定義します。m,nはベクトルの区別するための整数です (ベクトルを v1,v2と区別するのと同じ)。δmnは
クロネッカーデルタです。m = nのときノルムが 1になることから、これは正規直交関係や規格直交関係と
呼ばれ、単位ベクトルが直交している関係です。ノルムが 1のとき正規化されているや規格化されていると
言います。また、正規直交関係を満たす |ϕ1⟩, |ϕ2⟩, · · · のことを正規直交系といいます (直交してるので線形
独立)。

　任意のベクトルのノルムを 1にする規格化は (任意のベクトルから単位ベクトルを作ること)、今の場合は
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|ϕ′⟩ = |ϕ⟩√
⟨ϕ|ϕ⟩

とすることで、常に可能です (実際にこれのノルムをとれば 1)なので、状態は単位ベクトルと仮定されてい
るために、規格化が出来ないゼロベクトルは状態になれないです。

　ここではm,nのように離散的に区別できる場合を使っていきますが、例えば位置 xは連続的なので

⟨x′|x⟩ = δ(x′ − x)

として、ディラックのデルタ関数が使われます (連続的なら位置でなくても同様)。細かい注意になりますが、
連続的な値 xによる |x⟩は数学的に厄介です。例えばすぐに分かるように、⟨x|x⟩ = δ(x− x) = δ(0) = ∞の
ために、数学的な取り扱いが難しくなっています。しかし、よっぽど数学の領域に踏み込まない限り、気を
回す必要性がないので、連続的な場合はデルタ関数となると思っていれば平気です。

　正規直交系を構成する |ϕn⟩ (n = 1, 2, . . .)を使い、任意の |ψ⟩を

|ψ⟩ =
∞∑

n=1

an|ϕn⟩ , an = ⟨ϕn|ψ⟩

このように展開できることを完全性と言い、完全性を持った正規直交系 |ϕn⟩を完全正規直交系と言います。
これは正規直交系を基底とした線形結合と同じ形ですが、無限個の和になっているために完全性という新し
い言葉を使っています。

　無限個でなくN 個で展開できるなら、ただのN 個の基底ベクトルを使った線形結合として定義されます。
しかし、無限個だと無限和になるために和が収束するのかという問題が出てきます。これに対して、完全性
によって無限和が収束するとしています。完全正規直交系を定義できることがヒルベルト空間を使う理由に
なっていて、仮定 (ii)に関連しています。これはエルミート演算子の項で触れます。

　 an = ⟨ϕn|ψ⟩は、展開において ⟨ϕm|を左からかけると

⟨ϕm|ψ⟩ =
∞∑

n=1

an⟨ϕm|ϕn⟩ =
∞∑

n=1

anδmn = am

となるからです。また、完全性は ⟨ϕn|ψ⟩を右にもっていくと

|ψ⟩ =
∞∑

n=1

|ϕn⟩⟨ϕn|ψ⟩

となるので

∞∑
n=1

|ϕn⟩⟨ϕn| = 1

もしくは

⟨ϕ|ψ⟩ =
∞∑

n=1

⟨ϕ|ϕn⟩⟨ϕn|ψ⟩ , ⟨ψ|ψ⟩ =
∞∑

n=1

⟨ψ|ϕn⟩⟨ϕn|ψ⟩ =
∞∑

n=1

|⟨ϕn|ψ⟩|2
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という形で書けます (|ϕ⟩は任意です)。これらの関係も完全性と呼ばれ、右側のはパーセヴァル (Parseval)
の等式と呼ばれます。

• 線形演算子
　量子力学で出てくる線形演算子 (linear operator, 線形変換、線形作用素)はブラケットか関数に作用して、
別のブラケットか関数にするものです。これによって量子力学での観測の性質を表現します。

　線形演算子をハットをつけて T̂ とすれば、ケット |ψ⟩と関数 ψへは

T̂ |ψ⟩ = |ϕ⟩ , T̂ψ = ϕ

として、別のケット |ϕ⟩と関数 ϕにします。線形とついているのは

T̂ (α1|ψ1⟩+ α2|ψ2⟩) = α1T̂ |ψ1⟩+ α2T̂ |ψ2⟩

T̂ (α1ψ1 + α2ψ2) = α1T̂ψ1 + α2T̂ψ2

として、線形性を持たせているからです (α1, α2はスカラー)。線形演算子はベクトルに作用するものなので、
スカラーとは交換します (T̂α|ϕ⟩ = αT̂ |ϕ⟩)。線形でない演算子を使うことはないので、演算子と言っていき
ます。

　 |ψ⟩に対して

T̂ |ψ⟩ = a|ϕ⟩

もしくは

T̂ |ψ⟩ = |ϕ′⟩

としたとき、ある状態 |ψ⟩に T という観測をすることで測定値 aを得て状態 |ψ⟩は状態 |ϕ⟩へ変化、もしく
はある状態 |ψ⟩に T という観測をすることで別の状態 |ϕ′⟩になることを意味します。ブラに対しても

⟨ψ′|Ŝ = ⟨ϕ′|b

となり、演算子はブラとケットの両方に作用することができます。

　表記上問題になるのは、⟨ϕ|T̂ |ψ⟩のようにブラとケットで挟まれているときです。ここでは

⟨ϕ|T̂ |ψ⟩ = (⟨ϕ|T̂ )|ψ⟩ = ⟨ϕ|(T̂ |ψ⟩)

として、積の結合法則を定義します。これに対して、演算子がどちらに作用しているかをはっきりさせるた
めに、⟨ϕ|T̂ψ⟩や ⟨T̂ ϕ|ψ⟩のようにブラケットの中に演算子を入れる表記も使われます。しかし、この書き方
は分かりやすいように見えて混乱を起こしやすいので、使わない方がいいです。

　演算子は常に交換するとは限らなく、一般的には

T̂ Ŝ|ϕ⟩ ̸= ŜT̂ |ϕ⟩
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となります。このため演算子の交換関係が必要になります。そして、等号でないことから、T, Sの観測順序
を替えたら同じ結果が得られないことを表しています。

　演算子を具体的に行列にするとはっきりします。N ×N 行列M とベクトル v(N × 1行列 )の積は

Mv = w (

N∑
j=1

Mijvj = wi)

となっているので、行列M は vからwへ変化させる演算子です。具体的には、例えば

(
0 1
0 0

)(
0
1

)
=

(
1
0

)

なので、これをブラケットに対応させれば

T̂ ⇔
(

0 1
0 0

)
, |ψ⟩ ⇔

(
0
1

)
, |ϕ⟩ ⇔

(
1
0

)

というわけで、演算子とブラケットを行列のように思っていると計算規則が受け入れやすいです。例えば、
行列は一般的には交換しないので交換関係が自然と入ってきます。

　演算子の具体例として行列としましたが、線形代数で出てくるように、演算子は行列で書くことが出来ま
す。これをブラケット表記で行います。T̂ |v⟩ = |w⟩とします。|v⟩, |w⟩を完全正規直交系 |ϕn⟩で展開して

|v⟩ =
∞∑

n=1

vn|ϕn⟩ , |w⟩ =
∞∑

n=1

wn|ϕn⟩

vn, wn は

vn = ⟨ϕn|v⟩ , wn = ⟨ϕn|w⟩

そうすると、T̂ |v⟩は

T̂ |v⟩ = T̂ (

∞∑
n=1

vn|ϕn⟩)

線形性から和を外に出せて

T̂ |v⟩ =
∞∑

n=1

vnT̂ |ϕn⟩

T̂ |ϕn⟩ = |ψn⟩として、|ψn⟩を |ϕn⟩で展開すれば

T̂ |ϕn⟩ = |ψn⟩ =
∞∑

m=1

amn|ϕm⟩
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cmn はm,nで指定される係数です。これを入れなおして

|w⟩ = T̂ |v⟩ =
∞∑

n=1

vnT̂ |ϕn⟩ =
∞∑

n=1

amnvn|ϕm⟩

|w⟩の展開と比べれば

wm =

∞∑
n=1

amnvn

これは行列とベクトルの積です。そして、amn は

T̂ |ϕn⟩ =
∞∑

m=1

amn|ϕm⟩

⟨ϕj |T̂ |ϕn⟩ =
∞∑

m=1

amn⟨ϕj |ϕm⟩

=

∞∑
m=1

amnδjm

= ajn

なので、

wm =

∞∑
n=1

amnvn

⟨ϕm|w⟩ =
∞∑

n=1

⟨ϕm|T̂ |ϕn⟩⟨ϕn|v⟩

となっています。つまり、|ϕn⟩を基底とし、amn を成分とする行列が演算子 T̂ に対応する行列 (表現行列)
です。wmが |w⟩に対応するベクトル成分、vnが |v⟩に対応するベクトル成分です。例えば、N × 1行列なら

|v⟩ =


⟨ϕ1|v⟩
⟨ϕ2|v⟩
...

⟨ϕN |v⟩

 =


v1
v2
...
vN


となり、ケットでは

⟨ψ| = (v∗1 v
∗
2 . . . v∗N )

となります。ブラケットの項で行列にするとき矢印を使っていたのは今見てきたように、vn は基底 |ϕn⟩に
依存しているからです。
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• 交換関係、反交換関係
　一般的な演算子は交換しないために交換関係の計算がよく出てきます。交換関係 (commutation relation)は

[T̂1, T̂2] = T̂1T̂2 − T̂2T̂1

と表記されます。また、量子力学ではほぼ出てきませんが、反交換関係というのもあり

{T̂1, T̂2} = T̂1T̂2 + T̂2T̂1

と表記されます。他にも [ ]−、[ ]+ のように区別することもあります。交換関係が

[T̂1, T̂2] = 0

になる場合、T̂1 と T̂2 は可換 (commutable)といいます。

　交換関係の基本的な公式は (ハットを省いていますが T1, T2, T3, T4 は演算子)

[T1, T2 ± T3] = [T1, T2]± [T1, T3]

[T1 + T2, T3 + T4] = [T1, T3] + [T2, T3] + [T1, T4] + [T2, T4]

[T1 − T2, T3 − T4] = [T1, T3]− [T2, T3]− [T1, T4] + [T2, T4]

[T1, T2T3] = T2[T1, T3] + [T1, T2]T3

[T1, T2T3] = {T1, T2}T3 − T2{T1, T3}

[T1, [T2, T3]] + [T2, [T3, T1]] + [T3, [T1, T2]] = 0

最後のはヤコビの恒等式と呼ばれます。例えば [T1, T2 ± T3]は

[T1, T2 ± T3] = T1T2 ± T1T3 − (T2T1 ± T3T1) = T1T2 ± T1T3 − T2T1 ∓ T3T1

= [T1, T2]± (T1T3 − T3T1)

= [T1, T2]± [T1, T3]

として確かめられます。

　演算子が交換しないことが同時観測できない現象を表現します。可換であれば同時観測できることを意味
します。

　演算子の交換関係では

[
∂

∂x
, x]

のように、微分演算子による場合が多く出てきます。このとき注意すべきなのは、演算子は関数 (ベクトル)
に作用すると定義されているために、関数に交換関係が作用しているとして計算されることです。なので、
この場合は
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[
∂

∂x
, x]ψ(x) =

∂

∂x
(xψ(x))− x

∂

∂x
ψ(x) = ψ(x) + x

∂

∂x
ψ(x)− x

∂

∂x
ψ(x) = ψ(x)

⇒ [
∂

∂x
, x] = 1

となります。

• c数、q数

　ｃ数は通常の数 (複素数)を指して、q数は演算子や行列を指します。また、古典論や古典的という単語は
量子論でないことを言っています。

• 固有値、固有状態
　演算子とケット (ブラ)が

T̂ |ϕn⟩ = an|ϕn⟩

このような関係になっているとします。このとき、an を T̂ の固有値、|ϕn⟩を T̂ の固有状態（固有ケット）
と呼びます。これは行列での固有値、固有ベクトルと同じです。なので、|ϕn⟩を固有ベクトルとも呼びます。
この方程式を解いて、固有値、固有状態が求まるか (固有値問題)が重要になっています。

　 T̂ を何かしらの観測に対応する演算子とします。そうすると、固有状態 |ϕn⟩は観測 T を行っても状態が
変わらないことを表わし、これは何度測定しても同じ測定値 an が出ることを言っています。このようにし
て、観測量に対応する固有値を導入し、測定値は固有値のどれかと仮定されます。現実の測定値は実数なの
で、固有値を実数とするためにエルミート演算子と制限され、仮定 (ii)となります。

　同じ固有値に対して複数の線形独立な固有状態 (線形独立なベクトルと同じ意味)があることを縮退と呼
びます。例えば、|ϕ1⟩と |ϕ2⟩が線形独立で

T̂ |ϕ1⟩ = a|ϕ1⟩, T̂ |ϕ2⟩ = a|ϕ2⟩

となっているなら、二重に縮退していると言います。

　同時固有状態と呼ばれるものがあり、これは複数の演算子に対して同時に固有状態になる場合です。同時
固有状態が存在するためには、その演算子が交換する必要があります。演算子として、T̂ , Ŝを用意し、これ
らに対する固有状態を |ϕ⟩とします。そうすると、それぞれの固有値を a, bとして

T̂ |ϕ⟩ = a|ϕ⟩ , Ŝ|ϕ⟩ = b|ϕ⟩

T̂ のほうに S を作用させると、aはスカラーなので演算子と交換することから

ŜT̂ |ϕ⟩ = aŜ|ϕ⟩ = ab|ϕ⟩

同じように Ŝ のほうに T̂ を作用させると

T̂ Ŝ|ϕ⟩ = bT̂ |ϕ⟩ = ba|ϕ⟩ = ab|ϕ⟩

となり、右辺が同じになります。よって T̂ Ŝ = ŜT̂ になるので、同時固有状態を持つとき演算子 T̂ , Ŝは交換
することになります。
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　これは T̂ , Ŝが交換するとしても同じように同時固有状態が存在することが示せます。T̂ |ϕ⟩ = a|ϕ⟩に Ŝを
作用させて、T̂ , Ŝ が交換するとすれば

ŜT̂ |ϕ⟩ = aŜ|ϕ⟩

T̂ Ŝ|ϕ⟩ = aŜ|ϕ⟩

T̂ |ϕ′⟩ = a|ϕ′⟩ (Ŝ|ϕ⟩ = |ϕ′⟩)

縮退がないなら、固有値 aに対応する固有状態は 1つしかないので、b|ϕ⟩ = |ϕ′⟩です。そうすると、|ϕ⟩に
Ŝ が作用しても |ϕ⟩のままでなくてはいけないので、|ϕ⟩は Ŝ の固有状態にもなっています。

• エルミート演算子
　関係の導出は「エルミート演算子」で行っています。

　エルミート共役 (hermite conjucate)と言ったとき記号で「†」を使い、演算子 T̂ を T̂ †とし、T̂ †を演算子
T̂ のエルミート共役演算子と呼びます。エルミート共役演算子は

⟨ψ|T̂ †|ϕ⟩ = ⟨ϕ|T̂ |ψ⟩∗

を満たすものとして定義されます。そして、

T̂ † = T̂

となっているとき、T̂ をエルミート演算子 (hermite operator)と呼びます。エルミート共役演算子の定義で
T̂ † = T̂ としてエルミート演算子にすれば

⟨ψ|T̂ |ϕ⟩ = ⟨ϕ|T̂ |ψ⟩∗

となります。

　エルミート共役「†」は

– 「†」はブラとケットを入れ替える：|ϕ⟩† = ⟨ϕ|, ⟨ϕ|† = |ϕ⟩, (T̂ |ϕ⟩)† = ⟨ϕ|T̂ †, (⟨ϕ|T̂ )† = T̂ †|ϕ⟩
– エルミート共役のエルミート共役は元に戻る：(T̂ †)† = T̂

– 複数の演算子のエルミート共役は順序を逆にする：(T̂1T̂2 · · · T̂n)† = T̂ †
n · · · T̂ †

2 T̂
†
1

– 和のエルミート共役は個別に取る：(T1 + T2 + · · ·+ Tn)
† = T †

1 + T †
2 + · · ·+ T †

n

– 複素数 αの「†」は複素共役と同じ：α† = α∗

という性質を持ちます。このようなエルミート共役「†」は行列では転置して複素共役を取れになります。複
数の演算子の順序が逆になるのも転置の性質に対応しています。

　エルミート演算子の重要な性質は、固有値は必ず実数になる、異なる固有値を持つ固有状態は直交する (内
積が 0)、というものです。仮定 (ii)で観測量とエルミート演算子を対応させているのは固有値が必ず実数だ
からです。なので、仮定 (ii)は、エルミート演算子 Âの固有値を a、固有状態を |ϕ⟩として

Â|ϕ⟩ = a|ϕ⟩

となることは、固有状態 |ϕ⟩に対して観測 Aを行った結果は固有値 aになると言えます。
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　エルミート演算子の異なる固有値 an (n = 1, 2, . . .)を持つ固有状態 |ϕn⟩は直交することから

⟨ϕm|ϕn⟩ = δmn

となり (状態は単位ベクトルなので、ノルムは 1に規格化している)、エルミート演算子の固有状態は正規
直交系を構成します。加えて、完全性も持たせて、任意の状態 |ψ⟩はエルミート演算子の固有状態 |ϕn⟩に
よって

|ψ⟩ =
∞∑

n=1

cn|ϕn⟩

と展開できると仮定されています (和の範囲は有限でも同様)。これは任意の状態は、エルミート演算子の固有
状態の無限和による重ね合わせで書けるという仮定です。言い換えれば、ヒルベルト空間の完全正規直交系と
して、エルミート演算子の固有状態が使えるという仮定です。このため、量子力学で状態 |ϕn⟩ (n = 1, 2, . . .)
と書かれたものは、完全正規直交系と暗黙の内に設定されていることが多いです。ただし、これは仮定とい
うよりそうならいいなに近いものなので（量子力学では気にする問題が表面上はないから）、仮定の中に含
めませんでした。

　また、無限和が必要になる理由も分かります。例えば、エルミート演算子を運動量に対応するとすれば、
運動量の値はいくらでも取れるので固有状態は有限個に収まらなく、無限和が必要となります。

　というわけで、今見てきたヒルベルト空間の数学が (i),(ii)です。次に、実験結果を説明するために必要な仮定
である (iii),(iv)を見ていきます。

• 確率
　確率の分野において、ある離散的な量xnが確率Pnで現れるとしたとき、その期待値 (expectation value)(確
率を使った平均)⟨x⟩は

⟨x⟩ =
∑
n

xnPn

と一般的に与えられます。nは対象に合わせた範囲です。確率 Pn は

∑
n

Pn = 1

と規格化されている必要があります。

　観測量に対応するエルミート演算子の固有値を an、固有状態を |ϕn⟩とします。固有状態を完全正規直交
系として、任意の状態 |ψ⟩を

|ψ⟩ =
∞∑

n=1

cn|ϕn⟩ (cn = ⟨ϕn|ψ⟩)

と展開したときの係数 cn から、an が観測される確率は |cn|2 で与えられると仮定します。これが仮定 (iii)
で、仮定 (i),(ii)を量子力学の解釈に結びつけるものです。確率と解釈できるのは、完全性と任意の状態 |ψ⟩
は単位ベクトルであることから

∞∑
n=1

|cn|2 =

∞∑
n=1

|⟨ϕn|ϕ⟩|2 =

∞∑
n=1

⟨ϕn|ψ⟩∗⟨ϕn|ψ⟩ =
∞∑

n=1

⟨ψ|ϕn⟩⟨ϕn|ψ⟩ = ⟨ψ|ψ⟩ = 1
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となり、|cn|2 を全て足せば 1になるからです。

　任意の状態 |ψ⟩にエルミート演算子 Âを作用させると

Â|ψ⟩ =
∞∑

n=1

cnÂ|ϕn⟩ =
∞∑

n=1

ancn|ϕn⟩

となりますが、これは Âに対応する観測量としての Âの固有値を出してくれません (|ψ⟩は Âの固有状態で
ない)。これに対する解釈が仮定 (iii)です (仮定 (ii)は固有状態に対してのみの仮定)。つまり、任意の状態
は観測量に対応するエルミート演算子の固有状態の重ね合わせになっていて、任意の状態を観測するとその
中から 1つの固有値 an が確率 |cn|2 で観測されるとします。そして、固有値 an が取り出されることから、
観測後には状態 |ψ⟩は固有状態 |ϕn⟩になるとされます。
　確率で固有値が与えられるために、期待値を求めることができます。⟨ψ|Â|ψ⟩を変形すると、

⟨ψ|Â|ψ⟩ =
∞∑

n=1

⟨ψ|Â|ϕn⟩⟨ϕn|ψ⟩ =
∞∑

n=1

an⟨ψ|ϕn⟩⟨ϕn|ψ⟩ =
∞∑

n=1

an|⟨ϕn|ψ⟩|2 =

∞∑
n=1

an|cn|2

|cn|2 は an が観測される確率なので、an の期待値を求める式になっています。なので、これを Âの期待値
⟨A⟩ = ⟨ψ|Â|ψ⟩とします。
　 cn = ⟨ϕn|ϕ⟩から、状態 |ϕ⟩から状態 |ϕn⟩へ移る確率と解釈すれば、状態 |ϕ⟩から別の状態 |ϕn⟩へ移る
確率全てを足せば 1になるとも言えます。また、期待値の式は、ある状態 |ψ⟩に観測Aを行うことで測定値
an を取り出し、その観測の固有状態 |ϕn⟩を経由して最後の状態へ行くと見ることもできます。これは、状
態 |ψ⟩から観測 Aを経由して状態 |ψ⟩へ行くことは確率としてしか与えられないことを言っています。
　また、今の話からははっきり分かりませんが、振動の話での振幅部分に対応することから、⟨ϕ|ψ⟩のよう
に書かれたものを確率振幅や遷移振幅と呼びます。量子力学の目的の 1つは確率振幅 (ある状態から別の状
態になる確率)を求めることです。

　このように確率を定義すると状態に任意性があることが分かります。|ϕ⟩そのものでなく ⟨ϕ|ϕ⟩が物理的
な意味を持つとされるため、⟨ϕ|ϕ⟩の計算結果が変わらなければ |ϕ⟩は変更してもいいと言えます。⟨ϕ|ϕ⟩は
(|ϕ⟩)†|ϕ⟩なので、θを実数として

|ϕ⟩ ⇒ eiθ|ϕ⟩

としても

(eiθ|ϕ⟩)†eiθ|ϕ⟩ = ⟨ϕ|e−iθeiθ|ϕ⟩ = ⟨ϕ|ϕ⟩

となって、⟨ϕ|ϕ⟩になります。なので、eiθ をかけても物理は変わりません。このように、|ϕ⟩には eiθ の任
意性が常にあります。eiθ を位相因子と呼びます。これは複素平面における角度 θを位相とも呼ぶからです。
位相因子は物理の結果に影響しないので自由に選べて、それによって計算しやすい形に出来たりします。ま
た、eiθ|ϕ⟩の集まり (θの全ての値による集まり)を射線 (ray)と言います。

• ユニタリー演算子
　ユニタリー演算子 (unitary operator)Û は

Û† = Û−1

として定義されます。Û−1 は Û の逆です (Û Û−1 = Û−1Û = 1)。ユニタリー演算子によって仮定 (iv)は作
られます。
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　量子力学ではエルミート演算子 Âによるユニタリー演算子 eiÂがよく出てきます。ユニタリー演算子にな
るのは、U = eiÂ として、Û† を行列と同じように展開すれば

Û† = (eiÂ)† = (1 + iÂ+
1

2
(iÂ)2 + · · · )† = 1 + (−iÂ†) +

1

2
(−iÂ†)2 + · · · = e−iÂ†

= e−iÂ

から、UÛ† = 1となるからです。

　力学では第二法則として粒子の時間経過に対する仮定があるように、量子力学では状態の時間経過に対す
る仮定が必要になります。

　位置 x(t)から微小な時間経過した x(t+∆t)は

x(t+∆t) = x(t) +
dx

dt
∆x+ · · · = (1 +∆x

d

dt
+ · · · )x(t) = Fx(t)

のように書けて、F によって x(t)から x(t+∆t)に変換されています。これと同じように、時間 tに依存す
る状態 |ϕ; t⟩が時間 t′ での状態 |ϕ; t′⟩になることを

|ϕ; t′⟩ = Û(t′, t)|ϕ; t⟩

として、演算子 Û(t′, t)によって書けるとし、Û(t′, t)を時間発展演算子と呼びます。Û(t′, t)はユニタリー演
算子で、エネルギーを固有値とする演算子から作られると仮定します。エネルギーを固有値とする演算子は
ハミルトニアン演算子と呼ばれます。これが仮定 (iv)で、これを変形していくと、Ĥ をハミルトニアン演算
子として

iℏ
∂

∂t
|ϕ; t⟩ = Ĥ|ϕ; t⟩

となり、これはシュレーディンガー方程式やシュレーディンガーの運動方程式と呼ばれます。なので、仮定
(iv)はシュレーディンガー方程式です。

　ユニタリー演算子を使う理由は確率解釈を維持するためです。簡単に言えば、ユニタリー演算子だと
Û−1 = Û† なので、⟨ψ|ψ⟩からユニタリー演算子が作用した状態 |ψ′⟩でも

1 = ⟨ψ|ψ⟩ = ⟨ψ|Û−1Û |ψ⟩ = ⟨ψ|Û†Û |ψ⟩ = ⟨ψ′|ψ′⟩ (|ψ′⟩ = Û |ψ⟩)

となるために (単位ベクトルから単位ベクトルへの変換)、確率解釈が可能のままになるからです (時間発展
で言えば、任意の時間で確率解釈ができる)。

　もう 1つ重要なのが、仮定 (ii)において意味を変えずに、ユニタリー演算子によって別の固有状態にでき
ることです。これを見ておきます。

　エルミート演算子 Âをユニタリー演算子 Û で Û ÂÛ† としたとき、

(Û ÂÛ†)† = (Û†)†Â†Û† = Û ÂÛ†

なので、Û ÂÛ†はエルミート演算子です。Âの固有値を a、固有状態を |a⟩として、Û |a⟩ = |a′⟩にこれを作
用してみると

Û ÂÛ†|a′⟩ = Û ÂÛ†Û |a⟩ = Û Â|a⟩ = aÛ |a⟩ = a|a′⟩
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となるので、Û ÂÛ† は aを固有値に持ちます。このため、Âと |a⟩に対するユニタリー演算子による変換

Û ÂÛ† , Û |a⟩ = |a′⟩

の後に取り出される固有値は変わらなくなっています。これをユニタリー変換と言い、ユニタリー演算子が
重要になる理由です。仮定 (ii)はエルミート演算子による

Â|a⟩ = a|a⟩

という式から固有値 aを取り出すことなので、今の結果から仮定 (ii)は意味を変えずにユニタリー変換に
よって

Û ÂÛ†|a′⟩ = a|a′⟩ (|a′⟩ = Û |a⟩)

と書けることになります。

• 波動関数
　ヒルベルト空間のベクトルをブラケットによって与えてきましたが、関数はベクトルなので、関数を使う
ことができます。数学的に扱うのは非常に面倒なので、今までの話を関数に当てはめた場合を示すだけにし
ます。位置を 1次元としますが 3次元でも同じです。

　量子力学で使われるヒルベルト空間の関数 ψを波動関数 (wave function)と呼びます。波動関数は基本的
に位置を変数とします。波動関数は連続的とするので、連続的な場合の確率が使われます。なので、離散的
からの変更を簡単にまとめておきます。

　ある連続的な量 zがあるとしたとき、zの期待値は

⟨z⟩ =
∫
dz zP (z)

と与えられます。積分範囲は zの取れる範囲です。このときの P (z)は確率密度と呼ばれ

∫
dz P (z) = 1

と規格化されています。密度とついているように、P (z)は 1/z の次元を持っていることに注意してくださ
い (確率そのものでない)。

　波動関数によって仮定 (iii),(iv)は

(iii) |ψ(x)|2∆xを位置 xと x+∆xの間に粒子を見つける確率とする

(iv) iℏ
∂

∂t
ψ(x, t) = Ĥψ(x, t)

と言い換えられます。Ĥ はハミルトニアン演算子です。(iii)から、|ψ(x)|2 が確率密度となり、ψ(x)は

∫ b

a

dx |ψ(x)|2 = 1

と規格化できるとされます。|ψ(x)|2 は確率密度、|cn|2 は確率となっていることに注意して下さい。また、
範囲が無限大のときでも
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∫ ∞

−∞
dx |ψ(x)|2 = 1

とするために、ψ(x)は x = ±∞に近づくとき十分早くに 0になることが仮定されています。例えば

∫ ∞

−∞
dx

d

dx
ψ(x) =

[
ψ(x)

]∞
−∞ = 0

となります。特に無限遠での面積分はよく出てきて、その項はこの要求から消えるとされます。

　波動関数の確率解釈のためには常に規格化が可能でないといけないです。常には、ユニタリー演算子の項
でも触れたように、時間に関係なしにという意味です。これは「シュレーディンガー方程式とハイゼンベル
ク方程式」で触れます。

　ブラケットと波動関数は、確率解釈において

∫ b

a

dx|ψ(x)|2 = 1 = ⟨ψ|ψ⟩

となっていることから

⟨ψ|ϕ⟩ =
∫ b

a

dx ψ∗(x)ϕ(x)

と対応しています。これは、位置の観測 (位置演算子)の固有状態を |x⟩としたとき、位置は連続的なので完
全性は

∫ b

a

dx |x⟩⟨x| = 1

となることを使えば

⟨ψ|ϕ⟩ =
∫ b

a

dx⟨ψ|x⟩⟨x|ϕ⟩ =
∫ b

a

dxψ∗(x)ϕ(x)

つまり、波動関数 ϕ(x)はブラケットの内積 ⟨x|ϕ⟩から作れます。このことから、ある観測量 Aと、その固
有状態 |A⟩、そして任意の状態 |ϕ⟩があったとき、|A⟩と |ϕ⟩の内積 ⟨A|ϕ⟩によってできる関数 ϕ(A)が波動
関数と言うことができます。特に、位置の固有状態 |x⟩による ϕ(x) = ⟨x|ϕ⟩のときは位置表示、運動量の固
有状態 |p⟩による ϕ(p) = ⟨p|ϕ⟩は運動量表示と呼ばれます。
　任意の状態 |ϕ⟩だけでは数値としての代数計算ができないために観測量と対応がとれる状態との内積を取
ることで、その観測量を変数とする関数として波動関数は作られています。なので、⟨x|p⟩のような両方と
も連続的 (離散的でも)な観測量である場合は特殊で、波動関数と呼ばずに変換関数と言ったりします。実際
に、⟨x|p⟩は位置表示と運動量表示を変換するものになっていて、それは「シュレーディンガー方程式とハ
イゼンベルク方程式」で示します。

　波動関数を使ったとき、直交関係は状態 |ϕn⟩の直交性から

⟨ϕm|ϕn⟩ =
∫ b

a

dx⟨ϕm|x⟩⟨x|ϕn⟩ =
∫ b

a

dxϕ∗m(x)ϕn(x) = δmn
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連続的な量で区別されているときは

∫ b

a

dxϕ∗k′(x)ϕk(x) = δ(k′ − k)

T̂ のエルミート共役演算子は

∫ b

a

dx ψ∗(x)T̂ †ϕ(x) =

∫ b

a

dx (ϕ∗(x)T̂ψ(x))∗

右辺は T̂ は ψ(x)に作用していることから、T̂ψ(x)をセットにして複素共役を

∫ b

a

dx (ϕ∗(x)T̂ψ(x))∗ =

∫ b

a

dx (T̂ψ(x))∗ϕ(x)

と書くことができます。並びを変えてるのは複素共役を左側に置くのが慣習になっているからです。

　 Âがエルミート演算子なら

∫ b

a

dxψ∗(x)Â(x)ϕ(x) =

∫ b

a

dx(ϕ∗(x)Â(x)ψ(x))∗

演算子 T̂ の期待値は

< T >= ⟨ψ|T̂ |ψ⟩ =
∫ b

a

dx′
∫ b

a

dx⟨ψ|x′⟩⟨x′|T̂ |x⟩⟨x|ψ⟩

=

∫ b

a

dx′
∫ b

a

dx ψ∗(x′)T̂ (x′, x)ψ(x) (⟨x′|T̂ |x⟩ = T̂ (x′, x))

T̂ (x′, x)は、変数 x′, xが行列の成分を表していると見れば、演算子 T̂ の x′, xの場合での行列と捉えられま
す。x, x′は連続値なので Tmnのように書かないで関数の変数として書いています。T̂ (x′, x)は x = x′のみで
値を持ち (行列で言えば対角成分のみを持つ)、デルタ関数によって T̂ (x′, x) = δ(x′ − x)T̂ (x)と書けるなら

< T >=

∫ b

a

dx ψ∗(x)T̂ (x)ψ(x)

となります。
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