
中心力でのシュレーディンガー方程式

中心力によるポテンシャルを含むシュレーディンガー方程式を見ていきます。ここでは波動関数の角度依存部分を

扱います。「波動関数の動径部分」で続きの話をしています。

特殊関数が出てきますが、ここではあまり気にする必要はないです。

力学の「極座標での波動方程式」とほぼ同じことをしているので、そっちで求めている途中式は飛ばしています。

　中心力のときのポテンシャル V は原点からの距離 rのみに依存するので V (r)と書けます。これは球対称であ

ることを意味するので (角度依存がないため)、シュレーディンガー方程式を極座標にします。

　質量mp(後でmを負でない整数として使うのでmp としているだけ)の粒子のハミルトニアン演算子を
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と与え、∇2 は極座標 (r, θ, ϕ)では
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そうすると、時間依存性がないとして、シュレーディンガー方程式 Ĥψ(r) = Eψ(r)は
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波動関数が動径 r = |r|のみに依存する部分と角度 θ, ϕのみに依存する部分に分離できると仮定して

ψ(r) = R(r)Y (θ, ϕ)

としてみると
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左辺は r、右辺は θ, ϕに依存するので、両辺は同じ定数になっている必要があります。それを aとして、Rと Y

の式に分けると
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ここでは角度部分を見ていきます。

　ここから Y (θ, ϕ)を求めていきます。まず、さらに分離させて Y (θ, ϕ) = A(θ)B(ϕ)と仮定すると
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となるので
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これも両辺で同じ定数になる必要があるので、それを b2 として

1
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sin θ

d
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dθ
) + a sin2 θ = b2

d2B(ϕ)
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というわけで、角度部分は

sin θ
d
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(sin θ

dA(θ)

dθ
) + (a sin2 θ − b2)A(θ) = 0

d2B(ϕ)

dϕ2
+ b2B(ϕ) = 0

として、2つの式になります。後はそれぞれの解を求めればいいです。

　 B の解は簡単に分かって

B(ϕ) = eibϕ

任意定数は省いてます。極座標での ϕは 0 ≤ ϕ < 2πで、2πでもとの位置に戻ってくるので

B(ϕ) = B(ϕ+ 2π) ⇒ eibϕ = eib(ϕ+2π)

という条件が付くことから、b = 0,±1,±2, . . .となります。|b| = mとします。mとすると質量と紛らわしいです

が、mが使われることが多いのでここでもそうします。
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　 A(θ)はかなり面倒です。この解を求めるときに注意すべきなのは、波動関数の要求を満たす解でなければいけ

ない点です。要求は、空間全体で有限の値を持ち、無限遠で 0になるということです。ただし、ここでは角度依存

部分なので無限遠の要求は関係ないです。

　途中計算を飛ばしている部分は力学の「極座標での波動方程式」を見てください。まず、z = cos θと置き換え

ると

d
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これはルジャンドル陪方程式と呼ばれ、z = ±1 (θ = 0, π)で確定特異点を持ちます。まともに解けないので級数

解を求めます。x = 0は確定特異点になっているので、フロベニウス級数から

A(x) = xs
∞∑

n=0

cnx
n (3)

と仮定します。

　先に確定特異点付近がどうなっているのか近似的に見ておきます。z = 1付近に近似するために、x = 1− zと

して、x2 の項を無視すると
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2A(x)

dx2
+ 2(1− x)

dA(x)

dx
+ (a− m2

x(2− x)
)A(x) = 0
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(3)を第 1項に入れると
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第 3項では
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これらでの xs−1 の項を取り出すと
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2
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s−1 = (2s2 − m2

2
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xs−1 ̸= 0, c0 ̸= 0とすれば

s = ±m
2

(m = |b|)

−m/2では x = 0のとき発散してしまうので、s = m/2と選べば

A0(z) = xm/2
∞∑

n=0

cnx
n = (1− z)m/2

∞∑
n=0

cn(1− z)n = (1− z)m/2
∞∑

n=0

c′nz
n

(1− z)nを展開したとき出てくる係数を cnに加えたものを c′nとしています。z = −1でも同様の結果になります。

なので、どちらの場合でも s = m/2とすることで発散しない級数解が作れます。

　この結果から、z = ±1を合わせた形として

A(z) = (1− z2)m/2
∞∑
j=0

cjz
j

と仮定して解を求めます。これを

A(z) = (1− z2)m/2v(z)

として、ルジャンドル陪方程式 (2)に入れると

(1− z2)
d2v(z)

dz2
− 2(m+ 1)z

dv(z)

dz
+ (a−m(m+ 1))v(z) = 0

このときの vの級数解における cj の漸化式は

cj+2 =
(j +m)(j +m+ 1)− a

(j + 2)(j + 1)
cj

m = 0, 1, 2, . . .なので、j の増加によって cj+2 > cj です。このため、|z| = 1のとき級数は発散します。しかし、

aが負でない整数であるなら

4



(j +m)(j +m+ 1) = a (4)

となったとき 0になるので、そこで漸化式が止まります。漸化式が止まるために、級数は

∞∑
j=0

cjz
j ⇒

j0∑
j=0

cjz
j

として、有限の項までになり、有限で終わることで発散しなくなります。なので、波動関数を空間全体で有限の値

にするために、漸化式が止まる場合を解として使います。

　 (4)になるときの j を j0 として、負でない整数 aは

a = (j0 +m)(j0 +m+ 1) = l(l + 1) (l = j0 +m)

と与えられます。v の解は aで指定され、aは lとmによるので、v を vml として Aを Pm
l と書くことにすれば

(mはm乗でなく区別の添え字)、ルジャンドル陪方程式 (2)の解として

A(z) = Pm
l (z) = (1− z2)m/2vml (z) (l ≥ m , m = 0, 1, 2, . . . , z = cos θ)

Pm
l をルジャンドル陪関数 (associated Legendre function)と言い、今の波動関数の要求を満たす解となります。

ルジャンドル陪方程式の解がルジャンドル陪関数であることは、力学の「極座標での波動方程式」や数学の「ル

ジャンドル方程式」を見てください。

　ルジャンドル陪関数はルジャンドル多項式から求められます。ルジャンドル多項式 Pl から、ルジャンドル陪関

数は

Pm
l (z) = (1− z2)m/2 d

m

dzm
Pl(z)

と与えられ、ルジャンドル多項式はロドリゲスの公式

Pn(z) =
1

2nn!

dn

dzn
(z2 − 1)n

によって与えられます (数学の「ルジャンドル多項式」参照)、例えば、P2 までは

P0 = 1 , P1(z) = z , P2(z) =
1

2
(3z2 − 1)

となり、ルジャンドル陪関数は
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P 0
0 = P0 = 1

P 0
1 (z) = P1 = z = cos θ

P 1
1 (z) = (1− z2)1/2

dP1

dz
= (1− z2)1/2 = (1− cos2 θ)1/2 = sin θ

P 0
2 (z) = P2 =

1

2
(3z2 − 1) =

1

2
(3 cos2 θ − 1)

P 1
2 (z) = (1− z2)1/2

dP2

dz
= 3z(1− z2)1/2 = 3 sin θ cos θ

P 2
2 (z) = (1− z2)

d2P2

dz2
= 3(1− z2) = 3 sin2 θ

と求められます。ちなみに、これらからルジャンドル陪関数は多項式になっていないのが分かります。また、ル

ジャンドル陪関数はルジャンド多項式の微分なので、P−m
l は定義できないように思えますが、ロドリゲスの公式

から

Pm
l (z) =

1

2nn!
(1− z2)m/2 d

l+m

dzl+m
(z2 − 1)l

となるために、l−m ≥ 0の範囲なら定義できます。なので、今のm ≤ lの制限において、P−m
l が定義できます。

　というわけで、中心力での波動関数の角度部分は

Y m
l (θ, ϕ) = A(θ)B(ϕ) = Pm

l (cos θ)eibϕ (|b| = m)

と与えられ、これを球面調和関数 (spherical harmonics)と言います。球面調和関数の添え字は Yl,mと書かれたり

もします。

　規格化をします。波動関数の規格化は極座標において

∫ ∞

0

dr r2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ|ψ(x)|2 = 1

なので、動径部分と角度部分の規格化定数Nr, N を

N2
r

∫ ∞

0

dr r2|R(r)|2 = 1 , N2

∫ π

0

dθ sin θ

∫ 2π

0

dϕ |Y m
l (θ, ϕ)|2 = 1

とします。そうすると、θ, ϕ部分に対して規格化定数をNθ, Nϕ として

N2
θ

∫ π

0

dθ sin θ|Pm
l (θ)|2 = 1 , N2

ϕ

∫ 2π

0

dϕ|Bm(ϕ)|2 = 1

ϕ部分は

∫ 2π

0

dϕ|B(ϕ)|2 =

∫ 2π

0

dϕ = 2π ⇒ Nϕ =
1√
2π
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θ部分は、z = cos θ (dz = − sin θdθ)なので

∫ π

0

dθ sin θ|Pm
l (θ)|2 =

∫ 1

−1

dzPm
l (z)Pm

l (z) =
2

(2l + 1)

(l +m)!

(l −m)!
⇒ Nθ =

√
2l + 1

2

(l −m)!

(l +m)!

これは最後に示します。また、mは整数なのでm ̸= m′ のとき

∫ 2π

0

dϕB∗
m′(ϕ)Bm(ϕ) =

∫ 2π

0

dϕei(m−m′)ϕ = 0

このため、m = m′ が要求されるので、球面調和関数の直交性は

N2

∫ π

0

dθ sin θ

∫ 2π

0

dϕ (Y m′

l′ (θ, ϕ))∗Y m
l (θ, ϕ) = δll′δmm′

として書かれます。

　よって、規格化を含めた球面調和関数は

Y m
l (θ, ϕ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ (−l ≤ m ≤ l , l = 0, 1, 2, . . .)

(−1)m は任意ですが、量子力学の話ではほぼ付けて定義されています。これをルジャンドル陪関数に含めて

Y m
l (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ

Pm
l (z) = (−1)m(1− z2)m/2 d

m

dzm
Pl(z)

と定義することも多いです。球面調和関数は、例えば

Y 0
0 (θ, ϕ) =

√
1

4π
(

∫ π

0

dθ sin θ

∫ 2π

0

dϕ = 1 ⇒
√

1

4π
)

Y 0
1 (θ, ϕ) =

√
3

4π
cos θ (

∫ π

0

dθ sin θ cos2 θ

∫ 2π

0

dϕ = 1 ⇒
√

3

4π
)

Y 1
1 (θ, ϕ) = −

√
3

8π
sin θeiϕ

Y −1
1 (θ, ϕ) =

√
3

8π
sin θe−iϕ

Y 0
2 (θ, ϕ) =

√
5

16π
(3 cos2 θ − 1)

となっています。

　角運動量演算子との関係を簡単に示しておきます。z方向の角運動量演算子 L̂z は
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L̂z = x̂p̂y − ŷp̂x = −iℏ(x ∂
∂y

− y
∂

∂x
)

デカルト座標と極座標の偏微分の関

∂

∂x
= sin θ cosϕ

∂

∂r
+

1

r
cos θ cosϕ

∂

∂θ
− sinϕ

r sin θ

∂

∂ϕ

∂

∂y
= sin θ sinϕ

∂

∂r
+

1

r
cos θ sinϕ

∂

∂θ
+

cosϕ

r sin θ

∂

∂ϕ

∂

∂z
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ

から

L̂z = xp̂y − yp̂x

= − iℏ(r sin θ cosϕ(sin θ sinϕ
∂

∂r
+

1

r
cos θ sinϕ

∂

∂θ
+

cosϕ

r sin θ

∂

∂ϕ

− r sin θ sinϕ(sin θ cosϕ
∂

∂r
+

1

r
cos θ cosϕ

∂

∂θ
− sinϕ

r sin θ

∂

∂ϕ
)

= − iℏ(r sin2 θ sinϕ cosϕ
∂

∂r
+ sin θ cos θ sinϕ cosϕ

∂

∂θ
+ cos2 ϕ

∂

∂ϕ

− (r sin2 θ sinϕ cosϕ
∂

∂r
+ sin θ cos θ sinϕ cosϕ

∂

∂θ
− sin2 ϕ

∂

∂ϕ
)

= − iℏ
∂

∂ϕ

そうすると、l = 0, 1, 2, . . .に対して

L̂zY
m
l (θ, ϕ) = −iℏPm

l (cos θ)
∂

∂ϕ
eimϕ = ℏmPm

l (cos θ)eimϕ = ℏmY m
l (θ, ϕ) (−l ≤ m ≤ l)

となるので、角運動量演算子の z成分の固有関数になっています。

　同様に計算していくと

L̂x = yp̂z − zp̂y = −iℏ(− sinϕ
∂

∂θ
− cos θ

sin θ
cosϕ

∂

∂ϕ
)

L̂y = zp̂x − xp̂z = −iℏ(cosϕ ∂
∂θ

− cos θ

sin θ
sinϕ

∂

∂ϕ
)

L̂2 = L̂2
x + L̂2

y + L̂2
y = −ℏ2(

∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂

∂ϕ
) = −ℏ2(

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂

∂ϕ
)

と求まります。L̂2 は下の補足で求めています。(1)の微分部分は L̂2 に対応してるので、a = l(l + 1)から

L̂2Y m
l (θ, ϕ) = ℏ2l(l + 1)Y m

l (θ, ϕ)

8



となっています。このように、Y m
l (θ, ϕ)は L̂2, L̂z の固有関数で、「角運動量演算子」での話に対応しています。

　パリティを見ておきます。「シュレーディンガー方程式の解」で少し触れましたが、演算子としての定義を与え

ます。波動関数に対しては空間反転 r → −rを起こす演算子を P̂ とすれば

P̂ψ(r) = ψ(−r)

P̂ をパリティ演算子 (parity operator)と呼びます。もう１回作用させると

P̂ P̂ψ(r) = P̂ψ(−r) = ψ(r)

なので、P̂ 2 = 1が要求されます。そうすると、P̂ の固有値を λ、波動関数 ψ(r)がその固有関数であるなら

P̂ψ(r) = λψ(r)

P̂ 2ψ(r) = λ2ψ(r)

ψ(r) = λ2ψ(r)

となるので、固有値は±1です。固有値が+1のときを正のパリティ、−1のときを負のパリティと定義されます。

関数で言えば、正のパリティなら偶関数、負のパリティなら奇関数です。

　パリティ演算子をルジャンドル陪関数に作用させます。rから −rへは、θから π − θに動かし、ϕから ϕ + π

に動かせば行けるので

P̂Pm
l (cos θ) = Pm

l (cos(π − θ)) = Pm
l (− cos θ) = Pm

l (−z) = 1

2nn!
(1− z2)m/2 dl+m

d(−z)l+m
(z2 − 1)l

= (−1)l+m 1

2nn!
(1− z2)m/2 d

l+m

dzl+m
(z2 − 1)l

= (−1)l+mPm
l (cos θ)

B(ϕ)では ϕが ϕ+ πになるので

P̂ eimϕ = eim(ϕ+π) = eimπeimϕ = cos(mπ)eimϕ = (−1)meimϕ

よって、球面調和関数では

P̂ Y m
l = (−1)l+m(−1)mPm

l e
imϕ = (−1)lY m

l

規格化定数は省いています。このように、波動関数の角度部分のパリティは lに依存します。

　最後に、ルジャンドル陪関数の直交関係が

∫ 1

−1

dxPm
l (x)Pm

k (x) =
2

(2l + 1)

(l +m)!

(l −m)!
δlk
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となるのを示します。まず、l ̸= kとしまず。ルジャンドル多項式 Pn のロドリゲスの公式は

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

これとルジャンドル陪関数との関係

Pm
n (x) = (1− x2)m/2 d

m

dxm
Pn(x)

から

∫ 1

−1

dxPm
l (x)Pm

k (x) =
1

2ll!

1

2kk!

∫ 1

−1

dx(1− x2)m
dm+l

dxm+l
(x2 − 1)l

dm+k

dxm+k
(x2 − 1)k

部分積分をくり返すと

∫ 1

−1

dx(1− x2)m
dm+l

dxm+l
(x2 − 1)l

dm+k

dxm+k
(x2 − 1)k

=
[
(1− x2)m

dm+l

dxm+l
(x2 − 1)l

dm+k−1

dxm+k−1
(x2 − 1)k

]1
−1

+ (−1)−1

∫
dx

d

dx

(
(1− x2)m

dm+l

dxm+l
(x2 − 1)l

) dm+k−1

dxm+k−1
(x2 − 1)k

= (−1)−(m+k)

∫
dx

dm+k

dxm+k

(
(1− x2)m

dm+l

dxm+l
(x2 − 1)l

)
(x2 − 1)k

微分部分で最も xのオーダが高い項は

dm+k

dxm+k

(
x2m

dm+l

dxm+l
x2l

)
=

dm+k

dxm+k
(x2mxl−m) =

dm+k

dxm+k
xm+l

このため、k > lなら 0になります。そして、どちらを l, kにするかは任意なので

∫ 1

−1

dxPm
l p

m
k = 0 (l ̸= k)

l = kでは

∫ 1

−1

dxPm
l (x)Pm

l (x) =
(−1)−(m+l)

22l(l!)2

∫
dx

dm+l

dxm+l

(
(1− x2)m

dm+l

dxm+l
(x2 − 1)l

)
(x2 − 1)l

ライプニッツ則

dn

dxn
(f(x)g(x)) =

n∑
k=0

n!

k!(n− k)!

dkf

dxk
dn−kg

dxn−k
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から

dm+l

dxm+l

(
(1− x2)m

dm+l

dxm+l
(x2 − 1)l

)
=

m+l∑
j=0

(m+ l)!

j!(m+ l − j)!

dj

dxj
(1− x2)m

dm+l−j

dxm+l−j

dm+l

dxm+l
(x2 − 1)l

=

m+l∑
j=0

(m+ l)!

j!(m+ l − j)!

dj

dxj
(1− x2)m

d2m+2l−j

dx2m+2l−j
(x2 − 1)l

(1− x2)m では x2m が最大のオーダなので j ≤ 2m、(x2 − 1)l では x2l なので 2m+ 2l − j ≤ 2lが要求されます。

これらは

j ≤ 2m , 2m ≤ j

となっているので、j = 2mのみで成立します。よって

∫ 1

−1

dxPm
l (x)Pm

l (x) =

∫ 1

−1

dx(1− x2)m
dmPl

dxm
dmPl

dxm

= (−1)−(m+l) 1

22l(l!)2

∫ 1

−1

dx(x2 − 1)l
m+l∑
j=0

(m+ l)!

j!(m+ l − j)!

dj

dxj
(1− x2)m

d2m+2l−j

dx2m+2l−j
(x2 − 1)l

= (−1)−(m+l) 1

22l(l!)2

∫ 1

−1

dx(x2 − 1)l
(m+ l)!

(2m)!(m+ l − 2m)!

d2m

dx2m
(1− x2)m

d2m+2l−2m

dx2m+2l−2m
(x2 − 1)l

= (−1)−(m+l) 1

22l(l!)2

∫ 1

−1

dx(x2 − 1)l
(l +m)!

(2m)!(l −m)!
(−1)m

d2m

dx2m
x2m

d2l

dx2l
x2l

= (−1)−(m+l) (−1)m

22l(l!)2

∫ 1

−1

dx(x2 − 1)l
(l +m)!

(2m)!(l −m)!
(2m)!(2l)!

= (−1)−(m+l) (−1)m

22l(l!)2
(2l)(l +m)!

(l −m)!

∫ 1

−1

dx(x2 − 1)l

= (−1)−(m+l) (−1)m+l

22l(l!)2
(2l)(l +m)!

(l −m)!

∫ 1

−1

dx(1− x2)l

=
1

22l(l!)2
(2l)!(l +m)!

(l −m)!

∫ 1

−1

dx(1− x2)l

残っている積分は

11



Jl =

∫
dx(1− x2)l =

∫
dx 1× (1− x2)l

=
[
x(1− x2)l

]1
−1

−
∫ 1

−1

dx x(−2lx)(1− x2)l−1

=

∫ 1

−1

dx 2lx2(1− x2)l−1

=

∫ 1

−1

dx (2l − 2l + 2lx2)(1− x2)l−1

=

∫ 1

−1

dx (2l − 2l(1− x2))(1− x2)l−1

= 2l

∫ 1

−1

dx(1− x2)l−1 − 2l

∫ 1

−1

dx(1− x2)l

= 2lJl−1 − 2lJl

これから漸化式として

Jl =
2l

2l + 1
Jl−1

そうすると

J1 =
2

3
J0

J2 =
4

5
J1 =

4

5

2

3
J0 = 22

2× 1

5× 3
J0

J3 =
6

7
J2 =

6× 4× 2

7× 5× 3
J0 = 23

3× 2× 1

7× 5× 3
J0

となっているので

Jl = 2l
l!

(2l + 1)!!
J0

二重階乗 n!! = n(n− 2)(n− 4) · · · は

(2n)!! = 2n(2n− 2)(2n− 4) · · · = 2n× 2(n− 1)× 2(n− 2) · · · = 2nn!

(2l + 1)!! = (2l + 1)(2l − 1)(2l − 3) · · · = (2l + 1)!

(2l)!!
=

(2l + 1)!

2ll!

となるので

Jl = (2l)2
(l!)2

(2l + 1)!
J0 = 22l+1 (l!)2

(2l + 1)!
(J0 =

∫ 1

−1

dx = 2)
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これを入れて

∫ 1

−1

dxPm
l (x)Pm

l (x) =
22l+1

22l(l!)2
(2l)!(l +m)!

(l −m)!

(l!)2

(2l + 1)!
=

2

(2l + 1)

(l +m)!

(l −m)!

よって、ルジャンドル陪関数の直交関係は

∫ 1

−1

dxPm
l (x)Pm

k (x) =
2

(2l + 1)

(l +m)!

(l −m)!
δlk

・補足

　 L̂2 を求めます。L̂は

L̂ = x× p̂ = −iℏ(x×∇)

なので

L̂2 = −ℏ2(x×∇) · (x×∇)

極座標 (r, θ, ϕ)での基底を er, eθ, eϕ として

x×∇ = (rer)× (er
∂

∂r
+ eθ

1

r

∂

∂θ
+ eϕ

1

r sin θ

∂

∂ϕ
)

= (er × eθ)
∂

∂θ
+ (er × eϕ)

1

r sin θ

∂

∂ϕ

= eϕ
∂

∂θ
− eθ

1

sin θ

∂

∂φ

極座標の基底は直交基底なので、ベクトル積は er, eθ, eϕを e1, e2, e3とすれば、レヴィ・チビタ記号 ϵijk (ϵ123 = +1)

を使って

ei × ej = ϵijkek

となっています。内積を取って

L̂2 = − ℏ2(eϕ
∂

∂θ
− eθ

1

sin θ

∂

∂ϕ
) · (eϕ

∂

∂θ
− eθ

1

sin θ

∂

∂ϕ
)

= − ℏ2
(
eϕ · ∂

∂θ
(eϕ

∂

∂θ
) + eθ ·

1

sin θ

∂

∂ϕ
(eθ

1

sin θ

∂

∂ϕ
)− eϕ · ∂

∂θ
(eθ

1

sin θ

∂

∂ϕ
)− eθ ·

1

sin θ

∂

∂ϕ
(eϕ

∂

∂θ
)
)

これの基底の微分で 0にならないのは

∂eθ
∂θ

= −er ,
∂eθ
∂ϕ

= eϕ cos θ ,
∂eϕ
∂ϕ

= −er sin θ − eθ cos θ
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なので

eϕ · ∂
∂θ

(eϕ
∂

∂θ
) = eϕ · ∂eϕ

∂θ

∂

∂θ
+ eϕ · eϕ

∂2

∂θ2
=

∂2

∂θ2

eθ ·
1

sin θ

∂

∂ϕ
(eθ

1

sin θ

∂

∂ϕ
) = eθ ·

∂eθ
∂ϕ

1

sin2 θ

∂

∂ϕ
+ eθ · eθ

1

sin2 θ

∂2

∂ϕ2
=

1

sin2 θ

∂2

∂ϕ2

eϕ · ∂
∂θ

(eθ
1

sin θ

∂

∂ϕ
) = eϕ · ∂eθ

∂θ

1

sin θ

∂

∂ϕ
+ eϕ · eθ

1

sin θ

∂

∂θ

∂

∂ϕ
= 0

eθ ·
1

sin θ

∂

∂ϕ
(eϕ

∂

∂θ
) = eθ ·

∂eϕ
∂ϕ

1

sin θ

∂

∂θ
+ eθ · eϕ

1

sin θ

∂

∂ϕ

∂

∂θ
= −cos θ

sin θ

∂

∂θ

よって

L̂2 = −ℏ2(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
) = −ℏ2(

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
)− cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
)

となります。
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