
波動関数の動径部分

「中心力でのシュレーディンガー方程式」の続きで、波動関数の動径部分を求めていきます。

　中心力のポテンシャル V (r)によるハミルトニアン演算子は

Ĥ =
p2

2mp
+ V (r)

これから、極座標 (r, θ, ϕ)での時間依存しないシュレーディンガー方程式は

(
− ℏ2

2mp
(
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂ϕ2
) + V (r)

)
ψ(r, θϕ) = Eψ(r, θϕ)

波動関数を動径部分 R(r)と角度部分 Y (θ, ϕ)に分けると
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このときの角度部分 Y (θ, ϕ)の解は球面調和関数 Y m
l となります。定数 aは l(l+1) (l = 0, 1, 2, . . .)となり、mは

−l ≤ m ≤ lの範囲の整数です。

　残っている動径部分の解を求めます。まず、ポテンシャルを与えます。粒子はポテンシャルによって拘束されて

いるとして、E < 0とし (運動エネルギーがポテンシャルを超えない)、ポテンシャルは 1/rに比例するとして

V (r) = −λ
r

λ > 0は定数です。引力を受けているとするためにマイナスにしています。

　 E < 0なので
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と置き換えると (置き換え方が本によって異なる場合があるので注意)、(1)の左辺は
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となるので
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aは l(l + 1)なので
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波動関数の要求から ρ→ ∞で R(ρ) → 0になる必要があるので、ρが十分大きいとして、まずは近似的な解を求

めますまた、別の変形を行っていることも多く、それは下の補足 1で示しています。

　第 1項の微分を行って
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これから、ρを十分大きいとするので、ρ−1, ρ−2 の項は無視した近似的な式として
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これの一般解は

R0 = C1e
ρ/2 + C2e

−ρ/2

C1, C2 は定数です。ρ→ ∞で 0になるには e−ρ/2 でなければいけないです。

　この結果から

R(ρ) = e−ρ/2F (ρ)

と仮定します。(3)の左辺の微分部分は

1

ρ2
d

dρ
(ρ2

d

dρ
)e−ρ/2F =

d2

dρ2
e−ρ/2F +

2

ρ

d

dρ
e−ρ/2F

=
d

dρ
(−1

2
e−ρ/2F + e−ρ/2 dF

dρ
) +

2

ρ
(−1

2
e−ρ/2F + e−ρ/2 dF

dρ
)

=
1

4
e−ρ/2F − 1

2
e−ρ/2 dF

dρ
− 1

2
e−ρ/2 dF

dρ
+ e−ρ/2 d

2F

dρ2
+

2

ρ
(−1

2
e−ρ/2F + e−ρ/2 dF

dρ
)

= e−ρ/2 d
2F

dρ2
+ e−ρ/2(

2

ρ
− 1)

dF

dρ
+ e−ρ/2(

1

4
− 1

ρ
)F

2



となり
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これはまともに解けないので級数解として求めます。

　 ρ = 0が確定特異点になっているので、フロベニウス級数によって
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k = ρsL(ρ)

と仮定します。これの微分は
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これが ρ ̸= 0で 0になるには、ρの各オーダの項がそれぞれ 0になる必要があります。ρs の項が 0になるには

ρs(s(s− 1) + 2s− l(l + 1))L = 0 ⇒ s(s+ 1)− l(l + 1) = 0
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なので、s = l,−(l + 1)が要求されます。しかし、ρ−(l+1) では ρ = 0で発散するので、s = lだけが選べます。

　そうすると、(5)は
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=
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∞∑
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第 1項は k = 0では 0になるので

∞∑
k=1

(k(k − 1) + (2l + 2)k)ckρ
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∞∑
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と変形すれば
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k=0

ρk
(
k(k + 1) + (2l + 2)(k + 1))ck+1 + (ν − l − 1− k)ck
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よって、括弧内は 0になることから漸化式として

(k(k + 1) + (2l + 2)(k + 1))ck+1 = − (ν − l − 1− k)ck

ck+1 =
k + 1 + l − ν

(k + 1)(k + 2l + 2)
ck (7)

これによる級数解が波動関数として使えるか調べるために、ρ→ ∞での近似的な振る舞いを見ます。
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　 ρが大きいとするので、級数は kが十分大きい部分からの寄与が主になっているとして大雑把に近似します。k

が l, ν より十分大きいなら

ck+1

ck
=

k + 1 + l − ν

(k + 1)(k + 2l + 2)
≃ 1

k
⇒ ck+1 =

1

k
ck

これは指数関数の展開での係数の関係

ex =

∞∑
k=0

bkx
k =

∞∑
k=0

1

k!
xk ⇒ bk+1 =

1

k
bk (b1 = b0 , b2 = b0 , b3 =

1

2
b0 , b4 =

1

3!
b0 , . . .)

と同じです。このため、主要な寄与は指数関数として現れると近似して

L(ρ) =

∞∑
k=0

ckρ
k ≃ eρ

そうすると

R = e−ρ/2F (ρ) = e−ρ/2ρlL(ρ) ≃ e−ρ/2eρρl = eρ/2ρl

これは ρ→ ∞で発散するので、(7)による級数解は波動関数の解として使えません。

　級数だと発散するなら、級数をどこかで切って多項式にすれば問題は解決すると考えます。漸化式 (7)が止まる

のは

k + 1 + l − ν = 0

となるときなので、k = ν − l − 1で止まります。このため、ν は 1, 2, . . .の整数である必要があります。

　というわけで、波動関数の解として使えるのは、ν が正の整数 nのときです。Lの微分方程式 (6)に戻ると

ρ
d2L

dρ2
+ (2l + 2− ρ)

dL

dρ
+ (n− l − 1)L = 0 (ν = n)

これを

α = 2l + 1 , β = n− l − 1

とすると

ρ
d2L

dρ2
+ (α+ 1− ρ)

dL

dρ
+ βL = 0

となり、この形の微分方程式をラゲール陪方程式 (associated Laguerre equation)と言い、その解としての多項式

はラゲール陪多項式と呼ばれます。なので、Lはラゲール陪多項式 Lα
β によって
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L(ρ) = Lα
β(ρ) =

β∑
k=0

(−1)k

k!

(α+ β)!

(k + α)!(β − k)!
ρk (α = 2l + 1 , β = n− l − 1)

と与えられます。Lα
β の αは α乗でなく区別の添え字です。また、ラゲール陪多項式の表記の仕方がこことは違っ

ている場合もあるので注意してください。ラゲール陪多項式については数学の「ラゲール陪多項式」を見てくだ

さい。

　よって、波動関数の動径部分は、n, lで指定されるので Rn,l と表記して

Rn,l(ρ) = Nre
−ρ/2ρlL2l+1

n−l−1(ρ) (κ =

√
− ℏ2
2mpE

, r =
κ

2
ρ)

n = 1, 2, . . .で、n− l − 1 ≥ 0から n ≥ l + 1です。規格化定数 Nr は最後に与えます。そして、エネルギー固有

値 E は

n = λ
κmp

ℏ2

n2 = − λ2
m2

p

ℏ4
ℏ2

2mpE

E = − λ2
mp

2ℏ2
1

n2

= − λ

2aλ

1

n2
(aλ =

ℏ2

λmp
)

として、離散的な値を持ちます。また、κは

κ =

√
− ℏ2
2mpE

=

√
ℏ2
2mp

2ℏ2n2
λ2mp

=
nℏ2

λmp

なので

ρ =
2

κ
r = 2

λmp

nℏ2
r =

2

naλ
r (κ = naλ)

となります。

　クーロン力によるポテンシャルとして、原子番号 Z と素電荷 eによって

V (r) = −λ
r
= −αe

Ze2

r
(λ = αeZe

2 , aλ =
ℏ2

αeZe2mp
)

と与えて、質量mpを電子の質量meにすれば、水素原子内の電子の運動と見なせます (原子核は固定されており、

その原子核の電荷+eとのクーロン力を受けている電子の運動)。αeは単位系が SIなら 1/4πϵ0です。このときの

エネルギーは

En = − λ

2aλ

1

n2
= −λ

2

2

me

ℏ2
1

n2
= −α

2
eZ

2e4me

2ℏ2
1

n2
= −αeZ

2e2

2a0

1

n2
(a0 = Zaλ =

1

αe

ℏ2

e2me
, ρ =

2

na0
r, n = 1, 2, . . .)
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この a0をボーア半径と呼び、a0 ≃ 5.3×10−11[m]です。E1のときが一番エネルギーが低い状態で (負なので n = 1

が一番小さい)、基底状態 (ground state)と呼ばれます。今の基底状態のエネルギーは

E1 = −αe
(Ze)2

2a0

このエネルギーによって基底状態の電子は束縛されています。

　これが単純な水素原子のモデルで、水素原子内の電子はこのような離散的なエネルギーを持ちます。この結果

は、前期量子論でのボーアが水素原子内の電子の軌道角運動量は離散化されているとした予想から求まる結果と

同じです。

　まとめると、V (r) = −λ/r (λ > 0)のポテンシャルを含むシュレーディンガー方程式は極座標で

(
− ℏ2

2mp
(
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂ϕ2
) + V (r)

)
ψ(r, θϕ) = Eψ(r, θ, ϕ)

と書け、その波動関数とエネルギー固有値は

ψl,m,n(r, θ, ϕ) = Rn,l(ρ)Y
m
l (θ, ϕ) (ρ =

2

n

λmp

ℏ2
r =

2

n

1

aλ
r)

En = −λ
2

2

mp

ℏ2
1

n2
= − λ

2aλ

1

n2

波動関数は l,m, nによって状態が指定され、それぞれ

l = 0, 1, 2, . . . , n− 1

m = 0,±1,±2, . . . ,±l (−l ≤ m ≤ l)

n = 1, 2, . . .

となっています。Rn,l は

Rn,l(ρ) =

√
4

(na0)3
(n− l − 1)!

(n+ l)!n
e−ρ/2ρlL2l+1

n−l−1(ρ)

係数は規格化定数です。ラゲール陪多項式 Lα
β は

Lα
β(x) =

β∑
k=0

(−1)k

k!

(α+ β)!

(k + α)!(β − k)!
xk

球面調和関数 Y m
l は

Y m
l (θ, ϕ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ

係数は規格化定数です。ルジャンドル陪関数 Pm
l はルジャンドル多項式
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Pl(x) =
1

2nn!

dl

dxl
(x2 − 1)l

から

Pm
l (x) = (1− x2)m/2 d

m

dxm
Pl(x)

球面調和関数は角運動量演算子の z成分 L̂z と L̂2 = L̂2
x + L̂2

y + L̂2
z の固有関数で

L̂zY
m
l (θ, ϕ) = ℏmY m

l (θ, ϕ)

L̂2Y m
l (θ, ϕ) = ℏ2l(l + 1)Y m

l (θ, ϕ)

となっています。

　エネルギー固有値は nで指定され、波動関数は l,m, nで指定されるために縮退しています。縮退は固定された

nに対して、l,mの可能な範囲に対して起きているので

n−1∑
l=0

l∑
m=−l

m =

n−1∑
l=0

(2l + 1) = 1 + 2

n−1∑
l=1

l +

n−1∑
l=1

= 1 + 2
(n− 1)n

2
+ n− 1 = n2

よって、1つのエネルギー固有値に対して n2 重に縮退しています。

　 lの値には原子の分野で略称がついていて、l = 0では s、l = 1では p、l = 2では d、l = 3では f となってい

ます。sは sharp、pは principal、dは diffusive、f は fundamentalからです。l = 4以降は g, h, . . .と続いていき

ます。

　 Rの規格化をします。規格化定数をNr として、規格化は

N2
r

∫ ∞

0

dr r2|R(r)|2 = 1

ρにすれば

N2
r

κ3

8

∫ ∞

0

dρ ρ2|R(ρ)|2 = N2
r

κ3

8

∫ ∞

0

dρ e−ρρ2l+2|L2l+1
n−l−1(ρ)|

2 = 1

これを求めるために、ラゲール陪多項式の母関数を使います。

　ラゲール陪多項式 Lα
k (x)の母関数 G(x, t)は

G(x, t) =
e−xt/(1−t)

(1− t)α+1
=

∞∑
k=0

Lα
k (x)t

k (|t| < 1)

と与えられています (数学の「ラゲール陪多項式」参照)。これを使うと

∞∑
k=0

Lα
k (x)t

k
∞∑
j=0

Lα
j (x)s

j =
e−xt/(1−t)

(1− t)α+1

e−xs/(1−s)

(1− s)α+1
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両辺に e−xx2l+2 をかけて xで 0から∞の範囲で積分して

∞∑
k=0

∞∑
j=0

sjtk
∫ ∞

0

dx e−xx2l+2Lα
k (x)L

α
j (x) =

∫ ∞

0

dx e−xx2l+2 e
−xt/(1−t)

(1− t)α+1

e−xs/(1−s)

(1− s)α+1

求めたいのは、lが負でない整数で、α = 2l + 1の場合です。右辺は

I =
1

(1− t)α+1(1− s)α+1

∫ ∞

0

dx x2l+2 exp[−(1− t

1− t
− s

1− s
)x]

積分は、ガンマ関数

Γ(z) =

∫ ∞

0

dx xz−1e−x

によって

∫ ∞

0

dx xbe−ax =
1

ab+1

∫ ∞

0

dy ybe−y =
1

ab+1
Γ(b+ 1) (y = ax)

となることから

∫ ∞

0

dx x2l+2 exp[−(1− t

1− t
− s

1− s
)x] = Γ(2l + 2 + 1)(1 +

t

1− t
+

s

1− s
)−2l−2−1

lは負でない整数なので

Γ(2l + 2 + 1) = (2l + 2)!

となり

I =
1

(1− t)α+1(1− s)α+1
Γ(2l + 2 + 1)(1 +

t

1− t
+

s

1− s
)−2l−2−1

=
(2l + 2)!

(1− t)α+1(1− s)α+1
(

1

1− t
+

s

1− s
)−2l−2−1

=
(2l + 2)!

(1− t)2l+2(1− s)2l+2
(

1− st

(1− t)(1− s)
)−2l−2−1

=
(2l + 2)!

(1− t)2l+2(1− s)2l+2
(1− t)2l+3(1− s)2l+3(1− st)−2l−3

= (2l + 2)!(1− t)(1− s)(1− st)−2l−3

二項定理を使うと

(1− st)−2l−3 =

∞∑
p=0

(2l + 3 + p− 1)!

(2l + 2)!p!
(st)p =

∞∑
p=0

(2l + 2 + p)!

(2l + 2)!p!
(st)p

9



なので

I = (2l + 2)!(1− t)(1− s)

∞∑
p=0

(2l + 2 + p)!

(2l + 2)!p!
(st)p

= (1− t− s+ st)

∞∑
p=0

(2l + 2 + p)!

p!
(st)p

=

∞∑
p=0

(2l + p+ 2)!

p!
(st)p − t

∞∑
p=0

(2l + p+ 2)!

p!
(st)p − s

∞∑
p=0

(2l + p+ 2)!

p!
(st)p + st

∞∑
p=0

(2l + p+ 2)!

p!
(st)p

=

∞∑
p=0

(2l + p+ 2)!

p!
(st)p − t

∞∑
p=0

(2l + p+ 2)!

p!
sptp+1 − s

∞∑
p=0

(2l + p+ 2)!

p!
sp+1tp +

∞∑
p=0

(2l + p+ 2)!

p!
(st)p+1

(8)

これが

I =

∞∑
k=0

∞∑
j=0

tksj
∫ ∞

0

dx e−xx2l+2Lα
k (x)L

α
j (x) (9)

と等しくなっています。

　 (8)を見ると stの累乗で現れる項と、s, tが異なった累乗で現れる項がいるのが分かります。そして、(9)でも

stの項と s, tで異なる項がいます。そうすると、stで現れる項だけを取り出したとき、両辺でそれぞれ等しくなっ

ている必要があるので

∞∑
k=0

(st)k
∫
dxe−xx2l+2Lα

kL
α
k =

∞∑
p=0

(2l + p+ 2)!

p!
(st)p +

∞∑
p=0

(2l + p+ 2)!

p!
(st)p+1

(st)0 の項を取り出すと

∫ ∞

0

dxe−xx2l+2Lα
0L

α
0 = (2l + 2)! (10)

となるのが分かります。1次以降の項は

∞∑
k=1

(st)k
∫ ∞

0

dxe−xx2l+2Lα
kL

α
k =

∞∑
p=1

(2l + p+ 2)!

p!
(st)p +

∞∑
p=1

(2l + p+ 1)!

(p− 1)!
(st)p

∫ ∞

0

dxe−xx2l+2Lα
kL

α
k =

(2l + k + 2)!

k!
+

(2l + k + 1)!

(k − 1)!

=
(2l + k + 2)!

k!
+

(2l + k + 1)!k

k!

=
(2l + k + 1)!(2l + k + 2) + (2l + k + 1)!k

k!

=
(2l + k + 1)!

k!
(2l + 2k + 2)

10



これは k = 0のとき (10)になるので、まとめて

∫ ∞

0

dxe−xx2l+2|L2l+1
k (x)|2 =

(2l + k + 1)!

k!
(2l + 2k + 2)

となります。

　これを Rの規格化に使えば

N2
r

κ3

8

∫ ∞

0

dρ e−ρρ2l+2|L2l+1
n−l−1(ρ)|

2 = 1

N2
r

(2l + n− l − 1 + 1)!

(n− l − 1)!
(2l + 2(n− l − 1) + 2) =

8

κ3

N2
r =

8

κ3
(n− l − 1)!

(n+ l)!2n

=
4

(naλ)3
(n− l − 1)!

(n+ l)!n

となるので、Rを Rn,l と表記することにして

Rn,l(ρ) =

√
4

(naλ)3
(n− l − 1)!

(n+ l)!n
e−ρ/2ρlL2l+1

n−l−1(ρ) (ρ =
2

naλ
r)

例えば、ラゲール陪多項式

Lk
0 = 1 , Lk

1 = 1 + k − x

から

R1,0(r) =

√
4

a3λ
e−ρ/2L1

0(ρ) =
2√
a3λ
e−ρ/2 =

2√
a3λ
e−r/aλ

R2,0(r) =

√
4

(2aλ)3
1

2!2
e−ρ/2L1

1(ρ) =
1

2

√
1

2a3λ
e−ρ/2(2− ρ) =

1√
2a3λ

e−r/2aλ(1− 1

2

r

aλ
)

R2,1(r) =

√
4

(2aλ)3
1

3!2
e−ρ/2ρL3

0(ρ) =

√
1

a3λ

1

24
e−ρ/2ρ =

1√
24a3λ

e−r/2aλ
r

aλ

・補足

　 (1)のここで使った変形とは異なる形を示します。微分が

∂2

∂r2
(rR) = 2

∂

∂r
R+ r

∂2

∂r2
R

となることを利用します。(1)の第 1項は

11



∂

∂r
(r2

∂

∂r
)R = 2r

∂

∂r
R+

∂2

∂r2
R = r

∂2

∂r2
(rR)

なので、u = rRとすれば

( ∂
∂r

(r2
∂

∂r
) +

2mr2

ℏ2
(E − V )

)
R = l(l + 1)R

r2
∂2

∂r2
u+

2mr2

ℏ2
(E − V )u = l(l + 1)u

ℏ2

2m

∂2

∂r2
u+ (E − V )u =

ℏ2

2m

l(l + 1)

r2
u

− ℏ2

2m

∂2

∂r2
u+ (

ℏ2

2m

l(l + 1)

r2
+ V )u = Eu

という形になります。これからも同じような手順で Rが求められます。

　求められた

En = −λ
2m

2ℏ2
1

n2
(V = −λ

r
)

を使うと

− ∂2

∂r2
u+ (

l(l + 1)

r2
− 2λm

ℏ2
1

r
)u = − λ2m2

ℏ4
1

n2
u

∂2

∂r2
u = (

l(l + 1)

r2
− 2

aλr
+

1

a2λn
2
)u (aλ =

ℏ2

λm
)

となります。
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