
エルミート演算子

エルミート演算子の性質を求めていきます。

大文字のローマ文字を演算子として、ハットは省きます。

　演算子 T のエルミート共役演算子 T † は

⟨ψ|T †|ϕ⟩ = ⟨ϕ|T |ψ⟩∗ (1)

と定義されます。「†」はエルミート共役と呼ばれます。また、エルミート共役「†」は

(⟨ϕ|T )† = |ϕ′⟩ , ⟨ϕ|T = ⟨ϕ′| , T †|ϕ⟩ = |ϕ′⟩ (2)

としても定義できます。実際に、この定義から (1)が出てきます。T † が状態 |ϕ⟩へ作用することで |ϕ′⟩になると
して、T †|ϕ⟩と ⟨ψ|の内積は

⟨ψ|T †|ϕ⟩ = ⟨ψ|ϕ′⟩ (3)

同様に、⟨ϕ|T と |ψ⟩との内積は

⟨ϕ|T |ψ⟩ = ⟨ϕ′|ψ⟩

これらに内積の複素共役の定義

⟨ψ|ϕ′⟩ = ⟨ϕ′|ψ⟩∗

を使えば

⟨ψ|T †|ϕ⟩ = ⟨ϕ|T |ψ⟩∗

となり、(1)が出てきます。

　「†」の性質をさらに見ていきます。(2)からブラケットのエルミート共役は

⟨ϕ′|† = (⟨ϕ|T )† = T †|ϕ⟩ = |ϕ′⟩

となるので、「†」はブラとケットを入れ替えます。また、|ϕ′⟩ = T |ϕ⟩から

(⟨ϕ|T )† = T †|ϕ⟩
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逆に書いても

⟨ϕ|T = ⟨ϕ′| = |ϕ′⟩† = (T †|ϕ⟩)†

となって、同じように「†」は作用します。そして、これは T † = S と書けば

⟨ϕ|T = (T †|ϕ⟩)† = (S|ϕ⟩)† = ⟨ϕ|S† = ⟨ϕ|(T †)†

なので、T † にさらに「†」を作用させれば (T †)† = T となってもとに戻ります。

　今度は 2つの演算子 T1, T2 を用意し

T1T2|ϕ⟩ = T1|ϕ′⟩ = |ϕ′′⟩

とします。|ϕ′⟩のエルミート共役は

|ϕ′⟩† = (T2|ϕ⟩)† = ⟨ϕ|T †
2 = ⟨ϕ′|

なので

|ϕ′′⟩† = (T1|ϕ′⟩)† = ⟨ϕ′|T †
1 = ⟨ϕ|T †

2T
†
1

そうすると

|ϕ′′⟩† = (T1T2|ϕ⟩)† = ⟨ϕ|T2T1

(T1T2|ϕ⟩)† = ⟨ϕ|(T1T2)†

これらから

(T1T2)
† = T †

2T
†
1

となります。これは演算子がいくつでも成立します。

　演算子の線形性から

⟨ψ|(T1 + T2)
†|ϕ⟩ = ⟨ϕ|(T1 + T2)|ψ⟩∗ = ⟨ϕ|T1|ψ⟩∗ + ⟨ϕ|T2|ψ⟩∗

= ⟨ψ|T †
1 |ϕ⟩+ ⟨ψ|T †

2 |ϕ⟩

= ⟨ψ|(T †
1 + T †

2 )|ϕ⟩

となり、(T1 + T2)
† = T †

1 + T †
2 です。これは演算子がいくつでも成立します。

　「†」はブラとケットを入れ替えることから、
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⟨ψ|ϕ′⟩ = ⟨ϕ′|ψ⟩∗ = ⟨ϕ′|ψ⟩†

と書けるので、複素数 (スカラー)の「†」は複素共役と同じ意味です。
　簡単にまとめれば

• |ϕ⟩† = ⟨ϕ|, ⟨ϕ|† = |ϕ⟩, (T |ϕ⟩)† = ⟨ϕ|T †, (⟨ϕ|T )† = T †|ϕ⟩

• (T †)† = T

• (T1T2 · · ·Tn)† = T †
n · · ·T †

2T
†
1

• (T1 + T2 + · · ·+ Tn)
† = T †

1 + T †
2 + · · ·+ T †

n

• α† = α∗

となります。αは複素数です。

　 T † = T のときエルミート演算子と呼ばれます。エルミート演算子では

⟨ψ|T |ϕ⟩ = ⟨ϕ|T |ψ⟩∗

となります。エルミート演算子の性質

• 固有値は実数

• 異なる固有値に対応する固有状態はそれぞれ直交する

を示します。これらは当たり前のように使われるので、覚えておいた方が良いです。

　エルミート演算子の固有値が実数になることから示します。エルミート演算子を A、固有値を a1、対応する固

有状態を |a1⟩として

A|a1⟩ = a1|a1⟩

エルミート共役によって (A|a1⟩)† = ⟨a1|A†, a†1 = a∗1 なので

⟨a1|A† = (a1|a1⟩)† = a∗1⟨a1|

Aの別の固有状態 |a2⟩がいるとして、それで挟むと

⟨a2|A|a1⟩ = a⟨a2|a1⟩ , ⟨a1|A†|a2⟩ = a∗1⟨a1|a2⟩

ここで |a1⟩ = |a2⟩ = |a⟩と設定し、ノルムが ⟨a1|a1⟩ = 1と規格化されているとして

⟨a|A|a⟩ = a1 , ⟨a|A†|a⟩ = a∗1

これから、A = A† なら a = a∗ です。よって、エルミート演算子 A = A† のとき、固有値は実数です。
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　固有値が実数になることから、|a1⟩ ̸= |a2⟩なら ⟨a2|a1⟩ = 0が示せます。Aの固有状態 |a′⟩の固有値を a′ (a′ ̸= a)

とすれば、A = A† と固有値は実数から

A|a⟩ = a′|a′⟩ , (A|a′⟩)† = ⟨a′|A = a′⟨a′|

となるので

⟨a′|A|a⟩ = a⟨a′|a⟩ , ⟨a′|A|a⟩ = a′⟨a′|a⟩

この 2つを引けば

0 = (a− a′)⟨a′|a⟩

a ̸= a′ なので ⟨a′|a⟩ = 0が言えて、エルミート演算子において異なる固有値を持つ固有状態は直交 (内積が 0)し

ます。クロネッカーデルタを使えば、エルミート演算子の異なる固有値 an を持つ固有状態 |an⟩ (n = 1, 2, . . .)は

⟨am|an⟩ = δmn

となっています。このように、エルミート演算子の固有状態は正規直交系となります。そして、量子力学ではほぼ

全ての場合で無条件で完全性も加えて、完全正規直交系とします。簡単に言えば、量子力学で出てくるエルミー

ト演算子の固有ベクトルは完全正規直交系であり、基底として使えると仮定します (数学的な保証がなくても基底

として使う)。

　エルミート演算子の固有値は観測量に対応しているので、重要なのは

A|an⟩ = an|an⟩

という固有値問題 (固有値と固有状態を求める問題)が解けるかです。この問題に対して、エルミート演算子の固

有状態は完全正規直交系という性質から分かることがあります。

　エルミート演算子 Aの表現行列を固有状態から作ります。固有状態は完全正規直交系として、基底に使います。

異なる固有値 an に対応する固有状態 |an⟩ (n = 1, 2, . . .)として、エルミート演算子 Aの表現行列を

Amn = ⟨am|A|an⟩

と作ります。行列ではAmnのように添え字をつけて演算子と区別します。エルミート演算子の固有状態 |an⟩は直
交しているので

Amn = ⟨am|A|an⟩ = an⟨am|an⟩ = anδmn

よって、Amn は固有値を対角成分とする対角行列です。なので、完全正規直交系を作る固有状態を見つけると、

エルミート演算子は対角化できると言えます。このことから、固有状態を見つけることをエルミート演算子を対

角化すると言ったります。
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　基底は固有状態でなくていいので、任意の基底 |ϕn⟩から表現行列は作れます。しかし、任意の基底による ⟨ϕm|A|ϕn⟩
は対角行列ではないです。なので、対角行列 Amn にする変換を考えます。

　任意の基底で挟んだ ⟨ϕm|A|ϕn⟩はエルミート行列です。このことは簡単に確かめられます。Mmnを表現行列と

して

Mmn = ⟨ϕm|A|ϕn⟩ = ⟨ϕn|A|ϕm⟩∗ =M∗
nm

転置の記号を tとすれば、M∗
nm = (M∗t)mn なので、エルミート共役でM∗

nm = (M†)mn です。よってMmn =

(M†)mnとなるので、⟨ϕm|A|ϕn⟩はエルミート行列です。そうすると、エルミート行列はユニタリー行列によって
対角化できる性質が使えます。実際に、そうなるのを確かめます。

　固有状態による完全性を挟めば

⟨ϕm|A|ϕn⟩ = ⟨ϕm|
∑
j

|aj⟩⟨aj |A
∑
k

|ak⟩⟨ak|ϕn⟩

=
∑
j

∑
k

⟨ϕm|aj⟩⟨aj |A|ak⟩⟨ak|ϕn⟩

=
∑
j

∑
k

⟨ϕm|aj⟩Ajk⟨ak|ϕn⟩

和の範囲は省いていますが、1から無限大です (有限のN次元なら 1からN)。⟨ϕm|aj⟩も何かの行列Umj、⟨ak|ϕn⟩ =
⟨ϕn|ak⟩∗ = U∗

nk として

⟨ϕm|A|ϕn⟩ =
∑
i

∑
j

UmjAjkU
∗
nk

U∗
nk は転置すればエルミート共役になるので ⟨ak|ϕn⟩∗ = U∗

nk = (U†)kn と書けます。そして

Umk(U
†)kn =

∑
k

⟨ϕm|ak⟩⟨ak|ϕn⟩ = ⟨ϕm|ϕn⟩ = δmn

から、単位行列になるので Umk はユニタリー行列です。(U†)am を左から、Unb を右からかければ

⟨ϕm|A|ϕn⟩ =
∑
j

∑
k

UmjAjk(U
†)kn

(U†)amMmnUnb =
∑
j

∑
k

(U†)amUmjAjk(U
†)knUnb

=
∑
j

∑
k

δajAjkδkb

= Aab

となり、Mmn = ⟨ϕm|A|ϕn⟩は対角行列Aabに変換されます。これはエルミート行列に対するユニタリー行列によ

る相似変換 (ユニタリー変換)そのものです。
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　というわけで、固有状態が分からなくても、相似変換によって対角化できます。しかし、当たり前ですが、対

角化のためには固有状態の代わりにユニタリー行列を求める必要があります (固有値問題を、対角化できるユニタ

リー行列を求める問題に変えただけ)。

　最後にパウリ行列にも触れておきます。パウリ行列は

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)

と定義され、トレースが 0の 2× 2エルミート行列です。計算すればすぐに分かるように

交換関係 : [σi, σj ] = 2i

3∑
k=1

ϵijkσk

反交換関係 : {σi, σj} = 2I2δij

ローマ文字の添え字は 1から 3、I2 は 2× 2単位行列、ϵijk はレヴィ・チビタ記号で ϵ123 = +1です。他にも

σ2
1 = σ2

2 = σ2
3 = I2

σ1σ2 = iσ3 , σ2σ3 = iσ1 , σ3σ1 = iσ2

σ†
i = σi で σ2

i = I2 なのでパウリ行列はユニタリー行列でもあります。

　定数をつけて I2 とパウリ行列の和を取ると

aI2 + b1σ1 + b2σ2 + b3σ3 =

(
a+ b3 b1 − ib2

b1 + ib2 a− b3

)

これが 0になるのは、対角成分では a = ±b3から a = b3 = 0、非対角成分では b1 = ±ib2から b1 = b2 = 0となる

ので、I2, σi は線形独立です。さらに任意の 2× 2行列M は、成分をMab として

M =
1

2
(M11 +M22)

(
1 0

0 1

)
+

1

2
(M12 +M21)

(
0 1

1 0

)
+
i

2
(M12 −M21)

(
0 −i
i 0

)
+

1

2
(M11 −M22)

(
1 0

0 −1

)

=
1

2
(M11 +M22)I2 +

1

2
(M12 +M21)σ1 +

i

2
(M12 −M21)σ2 +

1

2
(M11 −M22)σ3

となり、I2 と σi の線形結合になります。これのエルミート共役は

M† =
1

2
(M∗

11 +M∗
22)I2 +

1

2
(M∗

21 +M∗
12)σ1 −

i

2
(M∗

12 −M∗
21)σ2 +

1

2
(M∗

11 −M∗
22)σ3

比較すれば分かるように、エルミート行列であるなら係数は全て実数です。第 3項では i(a+ ib) = −i(a− ib) (a, b

は実数)から、実数です。というわけで、エルミート行列 A = A† は実数 α, β1, β2, β3 によって
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A = αI2 + β1σ1 + β2σ2 + β3σ3

となり、任意の 2× 2エルミート行列は I2, σiの線形結合で書けます。言い換えれば、I2, σiは 2× 2エルミート行

列による実ベクトル空間の基底です。

・補足

　具体的に 3× 3行列としてエルミート行列のユニタリー変換を作ります。3次元複素ベクトル空間として、任意

の 3× 3エルミート行列を Aとします異なる固有値を a(i)、対応する固有ベクトルを u(i) として

Au(i) = a(i)u(i)

u(i) は 3× 1行列です。行列成分との区別のために、異なる固有値は (i)と表記しています。今は 3次元ベクトル

空間なので基底は 3つのベクトルの組です。エルミート行列の固有ベクトル u(i) は基底に選べるので、i = 1, 2, 3

です。

　固有ベクトルの成分を

u(i) =

 u1i

u2i

u3i


とします。これから、新しい行列 U を

U =

 u11 u12 u13

u21 u22 u23

u31 u32 u33

 = (u(1) u(2) u(3))

U† =

 u∗11 u∗21 u∗31

u∗12 u∗22 u∗32

u∗13 u∗23 u∗33

 =

 (u(1))†

(u(2))†

(u(3))†



と作ります。U†U を見てみると、u(i) の直交性 (u(i))†u(j) = δij (内積。複素数なので転置だけでなく複素共役も

必要)から

(U†U)11 = (u∗11 u
∗
21 u

∗
31)

 u11

u21

u31

 = u∗11u11 + u∗21u21 + u∗31u31 = (u(1))†u(1) = 1

(U†U)12 = (u∗11 u
∗
21 u

∗
31)

 u12

u22

u32

 = u∗11u12 + u∗21u22 + u∗31u33 = (u(1))†u(2) = 0

のようになっています。他の成分も同様に計算すれば、U†U = I が分かります。I は単位行列です。よって、U は

U† = U−1 からユニタリー行列です。
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　ユニタリー行列 U とエルミート行列 Aをかけると

AU = A(u(1) u(2) u(3)) = (a(1)u(1) a(2)u(2) a(3)u(3))

=
(
a(1)

 u11

u21

u31

 a(2)

 u12

u22

u32

 a(3)

 u13

u23

u33

)

さらに左から U† をかけると u(i) の直交性から

U†AU =

 u∗11 u∗21 u∗31

u∗12 u∗22 u∗32

u∗13 u∗23 u∗33

(a(1)
 u11

u21

u31

 a(2)

 u12

u22

u32

 a(3)

 u13

u23

u33

)

=
(
a(1)

 (u(1))†u(1)

(u(2))†u(1)

(u(3))†u(1)

 a(2)

 (u(1))†u(2)

(u(2))†u(2)

(u(3))†u(2)


 (u(1))†u(3)

(u(2))†u(3)

(u(3))†u(3)

)

=

 a(1) 0 0

0 a(2) 0

0 0 a(3)



よって、エルミート行列 Aはユニタリー変換 U†AU によって対角成分が固有値となる対角行列になります。
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