
シュレーディンガー方程式の解

よく出てくる例でのシュレーディンガー方程式を解きます。最初に時間依存するシュレーディンガー方程式の任意
の解の形を与えて、時間独立なシュレーディンガー方程式を具体的に解いています。
ポテンシャルがない場合、階段型ポテンシャル、無限大の井戸型ポテンシャルの場合を扱っています。

　ポテンシャル V (x)があるときのシュレーディンガー方程式は

iℏ
∂

∂t
ψ(x, t) = Ĥψ(x, t)

= (− ℏ2

2m
∇2 + V (x))ψ(x, t) (∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) (1)

V (x) = 0のときはすぐに分かるように、

ψ(x, t) = exp[− i

ℏ
(Et− k · x)] (E =

p2

2m
, p = ℏk)

としたものは解です。これは平面波で、kは波数です (ド・ブロイの関係)。平面波解はいろいろなところで出てく
るので覚えておくと便利です (特に exp内の符号)。
　「シュレーディンガー方程式とハイゼンベルク方程式」で求めたように、解の形を ψ(x, t) = ϕ(t)χ(x)と分離さ
せて

iℏ
dϕ(t)

dt
= Eϕ(t) (2a)

(− ℏ2

2m
∇2 + V (x))χ(x) = Eχ(x) (2b)

E は不明な定数です。ϕ(t)はすぐに Aを定数として

ϕ(t) = Ae−iEt/ℏ (3)

とできますが、E は不明のままです。一方で、時間独立なシュレーディンガー方程式 (2b)はハミルトニアン演算
子 Ĥ から

Ĥχ(x) = Eχ(x) (Ĥ =
p̂2

2m
+ V (x) = − ℏ2

2m
∇2 + V (x)) (4)

となっていて、E は Ĥ の固有値、χ(x)は固有関数です。なので、(2b)を解くことは固有値 E と固有関数 χを求
めることです。また、Ĥ の固有値なので、E はエネルギーです。
　ここで、任意の波動関数は正規直交系の固有関数で展開できることを使います。シュレーディンガー方程式 (1)

から波動関数の時間発展は e−iĤt/ℏ で行われるので、ψ(x, t)は t = 0での ψ(x, 0)から

ψ(x, t) = e−iĤt/ℏψ(x, 0)

ψ(x, 0)は時間依存性を持たないので、(4)でのハミルトニアン演算子の固有値En (n = 1, 2, . . . , N)を持つ固有関
数による正規直交系 χn(x)で展開して
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ψ(x, 0) =

N∑
n=1

cnχn(x)

N までにしていますが、無限大でも同様です。そうすると、任意の ψ(x, t)は

ψ(x, t) = e−iĤt/ℏψ(x, 0) = e−iĤt/ℏ
N∑

n=1

cnχn(x) =

N∑
n=1

cne
−iEnt/ℏχn(x)

e−iĤt/ℏを展開して、Ĥχn(x) = Enχn(x)を使うことで Ĥ は Enに置き換わります。これから、(4)での固有値、
固有関数によって任意の解を与えられます。今の変数分離した解に対応させれば

ψ(x, t) = ϕ(t)χ(x) =

N∑
n=1

Ane
−iEnt/ℏχn(x)

となるので、適当な条件から An を決めればいいです。また、An は

Am =

∫ b

a

d3x χ∗
m(x)ψ(x, 0)

から求まります。これは、固有関数 χn(x)の直交性

∫ b

a

d3x χ∗
m(x)χn(x) = δmn

から

∫ b

a

d3x χ∗
m(x)ψ(x, 0) =

N∑
n=1

An

∫ b

a

d3x χ∗
m(x)χn(x) =

N∑
n=1

Anδmn = Am

となります。
　ブラケットから行っても同じです。時間 tの状態を |ψ; t⟩として、時間発展演算子によって

|ψ; t⟩ = e−iĤt/ℏ|ψ; 0⟩

|ψ; 0⟩を、Ĥ の固有値 En を持つ固有状態による正規直交系 |χn⟩で展開して

|ψ; t⟩ = e−iĤt/ℏ|ψ; 0⟩ = e−iĤt/ℏ
N∑

n=1

cn|χn⟩ =
N∑

n=1

e−iEnt/ℏcn|χn⟩ =
N∑

n=1

cn(t)|χn⟩

これに左から ⟨x|をかけて波動関数にすれば

ψ(x, t) =

N∑
n=1

cn(t)χn(x) =

N∑
n=1

cne
−iEnt/ℏχn(x)

となり、一致します。このため、ブラケットにおいては

2



Ĥ|χn⟩ = En|χn⟩

を時間独立なシュレーディンガー方程式と呼び、|χn⟩を定常状態 (stationary state)と言います。定常状態と言わ
れる理由は、時間に関係なく同じ確率を与えるからです。時間依存するとして |χn; t⟩とし、|χn; 0⟩が Ĥ の固有状
態であるとすると

|χn; t⟩ = e−iĤt/ℏ|χn; 0⟩ = e−iEnt/ℏ|χn; 0⟩

これから、ある状態 |ϕ⟩への確率は

|⟨ϕ|χn; t⟩|2 = |⟨ϕ|χn; 0⟩e−iEnt/ℏ|2 = |⟨ϕ|χn; 0⟩|2

となるので、tと t = 0のどちらでも同じです。確率が一緒なら |χn; t⟩と |χn; 0⟩は区別する必要がないので、定
常状態と言われます。
　ここから、時間独立なシュレーディンガー方程式 (2b)の解を求めていきます（固有値 En、固有関数 χnを求め
る）。最初に V = 0とし、次に具体的な V の形を与えます。
　 V = 0とします。(2b)の左辺は

− ℏ2

2m
∇2χ(x, y, z) = − ℏ2

2m
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)χ(x, y, z)

となっていて、x, y, zに対して同じ形をしています。このことから

χ(x, y, z) = X(x)Y (y)Z(z)

と分解して

EX(x)Y (y)Z(z) = − ℏ2

2m
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)X(x)Y (y)Z(z)

= − ℏ2

2m
(Y (y)Z(z)

∂2X(x)

∂x2
+X(x)Z(z)

∂2Y (y)

∂y2
+X(x)Y (y)

∂2Z(z)

∂z2
)

E = − ℏ2

2m
(

1

X(x)

∂2X(x)

∂x2
+

1

Y (y)

∂2Y (y)

∂y2
+

1

Z(z)

∂2Z(z)

∂z2
)

左辺が定数で、右辺は第一項が x、第二項が y、第三項が zに依存しています。このため、右辺の各項は定数にな
る必要があります。よって

− ℏ2

2m

1

X(x)

d2X(x)

dx2
= Ex , −

ℏ2

2m

1

Y (y)

d2Y (y)

dy2
= Ey , −

ℏ2

2m

1

Z(z)

d2Z(z)

dz2
= Ez

という 3つの微分方程式に分解できます (E = Ex +Ey +Ez)。変数が 1つなので常微分に変えています。それぞ
れ同じ微分方程式なので、X(x)を解いていきます。
　単振動の微分方程式と同じなので (力学の「弦の振動」の波動方程式と同じ)、同様にして
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∂2

∂x2
X(x) = − 2m

ℏ2
EX(x)

0 = (
∂2

∂x2
+ k2)X(x)

(
k =

√
2mE

ℏ2
)

= (
∂

∂x
+ ik)(

∂

∂x
− ik)X(x)

これから、B1, B2 を任意定数として時間独立なシュレーディンガー方程式 (2b)の一般解は

X(x) = B1 exp[+ikx] +B2 exp[−ikx] (5)

と求まります。しかし、まだ E がどんな値を持つのかは分かりません。
　第一項と第二項が何を表しているのか見ておきます。1次元として、ψ(x, t) = ϕ(t)X(x)は、(3),(5)から

ψ(x, t) = exp[+i(kx− Et/ℏ)] + exp[−i(kx+ Et/ℏ)]

とできます (定数は省いてます)。第一項は +x方向へ速度 vで進む波の関数 f(x− vt)、第二項は −x方向へ進む
波の関数 f(x+ vt)と同じ格好をしています (k,E > 0)。このため、ψ(x, t)は速度 v = E/ℏkを持って、±x方向
へ進む波 (確率の波)から作られていると言えます。
　適当な条件を与えて任意定数 B1, B2 を決めます。今は時間依存を持たないので、境界条件を与えて決めます。
そのために、有限の大きさの箱を用意します。有限にするのは規格化をするためです。χ(x)を 1に規格化しよう
とするとき、絶対値の性質から

1 =

∫ b

a

d3x|χ(x)|2 =

∫ b

a

d3x|X(x)Y (y)Z(z)|2 =

∫ b

a

dx|X(x)|2
∫ b

a

dy|Y (y)|2
∫ b

a

dz|Z(z)|2

となるので、X,Y, Z の積分はそれぞれが 1になればいいです。しかし、3次元空間の範囲を制限しないと

∫ ∞

−∞
dx|eikx|2 =

∫ ∞

−∞
dx eikxe−ikx =

∫ ∞

−∞
dx = ∞

となり、規格化できません。なので、積分範囲 a, bは有限の箱の 1辺の長さ Lに合わせて、a = 0, b = Lとします。
　粒子は箱に閉じ込められているとして境界条件を与えます。xの範囲を 0から Lとして、境界条件を

X(0) = 0 , X(L) = 0 (0 ≤ x ≤ L) (6)

とします。これは xの境界から外に粒子はいない (見つかる確率が 0)という条件です。この条件で、粒子が箱に
閉じ込められたことになります。境界条件をX(x)に使えば

X(0) = B1 +B2 = 0

から、B1 = −B2 です。X(L)はオイラーの公式で三角関数にして
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X(L) = B1 exp[ikL] +B2 exp[−ikL]

= B1(cos(kL) + i sin(kL)) +B2(cos(kL)− i sin(kL))

= (B1 +B2) cos(kL) + i(B1 −B2) sin(kL)

= i(B1 −B2) sin(kL)

= 2iB1 sin(kL) = 0 (7)

B1 ̸= 0のとき、sinの性質から nを整数とすれば kL = nπで 0になります。これから kは

k =
nπ

L
, 　 k2 = (

nπ

L
)2 =

2mE

ℏ2

と求まり、E は kによって

　　　　 E =
ℏ2k2

2m
=

π2ℏ2

2mL2
n2

となり、離散的になります。nで区別されるので、k,E,X を kn, En, Xn と書くことにします。
　 B = B1 = −B2 は波動関数の規格化から求まります。計算を簡単にするために

Xn(x) = B exp[iknx]−B exp[−iknx] = i2B sin(knx)

として

1 =

∫ L

0

dx|X(x)|2 = 4|B|2
∫ L

0

dx sin2 kx = 4|B|2 1

kn

[1
2
knx+

1

4
sin 2knx

]L
0

= 2|B|2L

よって、

B = B1 = −B2 =

√
1

2L

となるので

Xn(x) =

√
1

2L
eiknx −

√
1

2L
e−iknx

もしくは、|B|2 = B∗B = 1/2Lなので B = −i
√

1/2Lともできることから

Xn(x) = 2iB1 sin(knx) =

√
2

L
sin(knx)

これは |Xn|2 が物理としての意味を持つために、絶対値が 1の係数を自由につけられるからです。
　 nは整数としていますが、k−n = −kn から
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X−n(x) =

√
1

2L
e−iknx −

√
1

2L
eiknx = −Xn(x)

となり、|Xn|2 = |X−n(x)|2なので、nは 0以上の整数で十分です。加えて、n = 0でX0 = 0なので、n = 0は意
味がないです (粒子が存在しない解)。よって、n = 1, 2, . . .です。
　直交性を見ておきます。m ̸= nとして

∫ L

0

dx X∗
m(x)Xn(x) =

2

L

∫ L

0

dx sin(kmx) sin(knx)

=
2

L

∫ L

0

dx sin(
πm

L
x) sin(

πn

L
x)

=
2

π

∫ π

0

dx′ sin(mx′) sin(nx′) (x′ =
π

L
x , dx′ =

π

L
dx)

加法定理から

∫ π

0

dx sin(mx) sin(nx) =
1

2

∫ π

0

dx
(
cos(m− n)x− cos(m+ n)x

)
=

1

2

( 1

m− n

[
sin(m− n)x

]π
0
− 1

m+ n

[
sin(m+ n)x

]π
0

)
= 0

となるので、0です。m = nでは

∫ π

0

dx sin2(nx) =
1

2

∫ π

0

dx (1− cos(2nx)) =
1

2

∫ π

0

dx− 1

2

∫ π

0

dx cos(2nx)

=
π

2
− 1

2

1

2n

[
sin(2nx)

]π
0

=
π

2

から

2

π

∫ π

0

dx′ sin2(nx′) = 1

よって、Xn は正規直交系です。
　残りの Y, Z も同様なので、境界条件 (6)での時間独立な解は

χn(x) = Xnx
(x)Yny

(y)Znz
(z) = (

2

L
)3/2 sin(knx

x) sin(kny
x) sin(knz

x)

En = Enx
+ Eny

+ Enz
=

ℏ2

2m
(k2nx

+ k2ny
+ k2nz

)

と求まります (nx, ny, nz = 1, 2, . . .)。
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　境界条件を変えて、別の解にしてみます。境界条件を

X(0) = X(L) ,
dX

dx
|x=0 =

dX

dx
|x=L

とします。これは、X(x)は Lの周期を持っている (元に戻る)という条件です。例えば、輪にそって動いていき、
一周したら元に戻るというものです。微分も加えているのは関数X が x = 0と x = Lで連続的に繋がるようにす
るためです。このような境界条件を周期的境界条件と言います。こうすることで、箱に閉じ込められている状況を
維持しながら壁を越えて Lの周期で粒子がいる状況を作れます。もっと簡単に言ってしまえば、端のない空間の
場合です。このため、端の影響を加えたくないときにこの条件は使われます (例えば、金属中の電子とか)。
　周期的境界条件での E と B1, B2 を求めます。周期的境界条件から

X(0) = B1 +B2 = B1e
ikL +B2e

−ikL = X(L)

dX

dx
|x=0 = ik(B1 −B2) = ik(B1e

ikL −B2e
−ikL) =

dX

dx
|x=L

これは、e±ikL = 1であればいいので

e±ikL = cos(kL)± i sin(kL) = 1

cos(kL) = 1, sin(kL) = 0と同時になるのは、nを整数として

knL = 2nπ

kn =
2nπ

L

これから、En は

En =
ℏ2k2n
2m

=
(2πℏ)2

2mL2
n2

条件からは B1, B2 は任意のままなので、B2 = 0と置いて

Xn(x) = Beiknx

としても、周期的境界条件を満たします。そして、規格化から

∫ L

0

|Xn(x)|2dx = |B|2L = 1 ⇒ B =

√
1

L

となり

Xn(x) =

√
1

L
eiknx

今度は nは整数 n = 0,±1,±2, . . .のままです。項が 2つ出てこないのは、周期的境界条件では端の寄与 (波の反
射)がないので、波の重ね合わせが起きないからと言えます。また、±の両方が取れるので、e−iknxを使っても同
じです。
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　正規直交系になっているのは expの積分が

∫ 2π

0

dx ei(m−n)x = 2πδmn

となることから確かめられます (δmn はクロネッカーデルタ)。m = nでは 2π になるのはすぐに分かり、m ̸= n
では三角関数にして個別に積分すれば分かります。
　周期的境界条件の別の意味にも触れておきます。exp[ipx]において、pを複素数とします。これを p = p′+iu (p′, u
は実数 )として、実部と虚部に分離させて

exp[ipx] = exp[ip′x] exp[−ux]

これに対して、周期的境界条件

exp[ip′x] exp[−ux] = exp[ip′(x+ L)] exp[−u(x+ L)]

を課すなら

exp[ip′L] exp[−uL] = 1

が成り立つ必要があります。exp[ip′L]は

exp[ip′L] = cos(p′L) + i sin(p′L) = 1

となればいいので、cos(p′L) = 1, sin(p′L) = 0から

exp[ip′L] = 2πn

後は u = 0と置けばいいです。よって、u = 0が周期的境界条件の結果として要求され、pは実数となります。こ
のように、周期的境界条件では、exp[ipx]での pが実数であることが要求されます。
　今度はポテンシャルに具体的な形を与えて時間独立なシュレーディンガー方程式を解きます。ポテンシャルとし
て、階段型ポテンシャルと井戸型ポテンシャルを使います。

• 階段型ポテンシャル
　 1次元とし、ある位置からポテンシャル V が存在するとして

V =

{
0 x < 0
V x > 0
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図のように粒子がポテンシャルに向かって飛んでくるとします。時間独立なシュレーディンガー方程式は

(− ℏ2

2m

∂2

∂x2
+ V )ψ(x) = Eψ(x) (8)

ポテンシャル V が粒子のエネルギー E より大きい場合と、小さい場合に分けて見ていきます。

– E > V

　 E − V > 0なので、ポテンシャルがいない領域といる領域でシュレーディンガー方程式は

x < 0 : (
∂2

∂x2
+ k20)ψ1(x) = 0

x > 0 : (
∂2

∂x2
+ k21)ψ2(x) = 0

k20 と k21 は

k20 =
2mE

ℏ2
, k21 =

2m(E − V )

ℏ2

ポテンシャルがないときと同じ微分方程式なので、解の形は同じものが使えます。
　ポテンシャルがない領域 1では、ポテンシャルがないときの一般解 (5)を使い

ψ1(x) = Aeik0x +Be−ik0x

A,B は任意定数です。上でも触れたように、第一項は xの正方向、第二項は負方向です。これは今の
状況に合わせれば、第一項はポテンシャルに向かっていく波 (入射波)、第二項はポテンシャルで反射さ
れた波（反射波）と言えます。同じように考えれば、領域 2(x > 0)ではポテンシャルを超えた波 (透過
波)だけが進んでいくので

ψ2(x) = Ceik1x

とします。C は任意定数です。
　 ψ1と ψ2は 2つの領域の境界上 (x = 0)で一致していないと、元のシュレーディンガー方程式 (8)と
意味が異なってしまいます。これらの式は x = 0で連続に繋がっているとして

ψ1(0) = ψ2(0) ,
∂ψ1

∂x

∣∣
x=0

=
∂ψ2

∂x

∣∣
x=0

という条件を要求します。微分の条件は滑らかに繋がっていることを要求するためです (x = 0での変
化が等しい)。これらの条件から、A,B,C は

A+B = C , k0A− k0B = k1C

という関係になります。B,C を Aで表せば

C =
k0A− k0B

k1
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これから、B は

B =
k0A− k0B

k1
−A

B
k1 + k0
k1

=
k0 − k1
k1

A

B =
k0 − k1
k1 + k0

A

C にこれを入れて

C =
k0A− k0B

k1
=
k0A

k1
− k0
k1

k0 − k1
k1 + k0

A =
k0(k1 + k0)− k0(k0 − k1)

k1(k1 + k0)
A

=
2k0

k0 + k1
A

これらによって、入射波、反射波、透過波のそれぞれの |ψ|2 から確率振幅となる A,B,C の割合は

B

A
=
k0 − k1
k1 + k0

,
C

A
=

2k0
(k1 + k0)

(9)

と分かります。
　ここでカレント (確率の流れ密度)を求めてみます。カレント J は波動関数によって

J = Re(
ℏ
im

ψ∗∇ψ)

と与えられるので (Reは実部)、A(入射波)に対しては

J
(+)
L = Re[(Aeik0x)∗

ℏ
im

∂

∂x
(Aeik0x)] = Re[A∗Ae−ik0x

ℏ
im

∂

∂x
eik0x]

=
ℏ
m
k0|A|2

B(反射波)は

J
(−)
L = Re[(Be−ik0x)∗

ℏ
im

∂

∂x
(Be−ik0x)] = − ℏ

m
k0|B|2

C(透過波)は

JT = Re[(Ceik1x)∗
ℏ
im

∂

∂x
(Ceik1x)] =

ℏ
m
k1|C|2

反射率 Rを (入射波のカレント/反射波のカレント)、透過率 T を (透過波のカレント/反射波のカレン
ト)と定義して
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R =
|J (−)

L |
|J (+)

L |
=

|B|2

|A|2
, T =

|JT |
|J (+)

L |
=
k1
k0

|C|2

|A|2

確率振幅の割合 (9)の絶対値の 2乗

∣∣B
A

∣∣2 =
∣∣k0 − k1
k1 + k0

∣∣2
∣∣C
A

∣∣2 =
∣∣ 2k0
(k1 + k0)

∣∣2
を使うことで、反射率と透過率は

R =
|B|2

|A|2
=

(k0 − k1)
2

(k1 + k0)2
, T =

k1
k0

|C|2

|A|2
=
k1
k0

4k20
(k1 + k0)2

R+ T は

R+ T =
(k0 − k1)

2

(k1 + k0)2
+
k1
k0

4k20
(k1 + k0)2

=
k0(k

2
0 + k21 − 2k0k1) + 4k1k

2
0

k0(k1 + k0)2

=
k30 + k0k

2
1 + 2k1k

2
0

k0(k1 + k0)2

=
k0(k

2
0 + k21 + 2k1k0)

k0(k1 + k0)2

= 1

これは、反射する割合 (確率)と透過する割合の和は 1、つまり全体での粒子のいる確率は変化しない
ということです。カレントのイメージは電荷の保存則に対応させて考えるとわかりやすいです。

– E < V

　 V − E > 0なので

x < 0 : (
∂2

∂x2
+ k20)ψ(x) = 0

x > 0 : (
∂2

∂x2
−K2)ψ(x) = 0

k20 とK2 は

k20 =
2mE

ℏ2
, K2 =

2m(V − E)

ℏ2

x < 0では (5)を使えばいいです。x > 0ではK2 の符号がマイナスになっているので、一般解は

11



ψ2 = Ce−Kx +DeKx

虚数がいないので x→ ∞にすると、DeKxは明らかに発散します。そうすると、規格化ができなくな
るので、D = 0にします。なので、領域 2では

ψ2 = Ce−Kx

とします。
　後は同じことをすればいいだけです。領域 1では

ψ1(x) = Aeik0x +Be−ik0x

なので、x = 0で連続という条件から

A+B = C , ik0(A−B) = −KC

C は A,B によって

C =
−ik0(A−B)

K

となるので、B は

B = C −A

=
−ik0(A−B)−KA

K

KB − ik0B

K
=

−ik0A−KA

K

B =
−(K + ik0)

K − ik0
A

=
k0 − iK

k0 + iK
A

C は

C = A+B = A+
−(iK − k0)

k0 + iK
A =

k0 + iK − (iK − k0)

k0 + iK
A =

2k0
k0 + iK

A

領域 2のカレントは

J = Re[(ψ)∗
ℏ
im

∂

∂x
ψ]

から分かるように、領域２では 0になります。B は

12



B =
k0 − iK

k0 + iK
A

の絶対値の 2乗をとると

|B|2 = |k0 − iK

k0 + iK
A|2 =

(k0 − iK)(k0 + iK)

(k0 + iK)(k0 − iK)
|A|2 = |A|2

になります。この結果は、領域 1では x = 0において全反射が起きているということです。
　それにもかかわらず領域 2では

|ψ2|2 = |C|2e−2Kx =
4k20

k20 +K2
|A|2e−2Kx

(
|C|2 =

4k20
k20 +K2

|A|2
)

という存在確率を持っています。この存在確率は全反射することと矛盾していますが、この現象はポテ
ンシャルの中にある程度めり込んだ後に反射されると解釈されていて、そう考えれば何も矛盾しないこ
とになります。
　また、この存在確率は指数関数的に減少していきますが、ポテンシャルの幅が有限ならば、めり込ん
で存在確率が減少しきる前に抜け出すことができます。このことをトンネル効果 (tunnel effect)と呼び
ます。

• 井戸型ポテンシャル
　ポテンシャルが無限の場合の一次元井戸型ポテンシャルを扱います。話を簡単にするために無限大のポテ
ンシャルに囲まれているとします。そうすると、無限大のポテンシャルを超えることを粒子はできないため
に、ポテンシャルがある領域には粒子が存在できなく、波動関数は 0です (存在する確率が 0)。なので、こ
のときは、ポテンシャルのない領域 (ポテンシャルに囲まれた内側)で

− ℏ2

2m

∂2

∂x2
ψ(x) = Eψ(x)

となり、有限の箱に閉じ込められた場合と同じです。

同じことをしてもしょうがないので、パリティの話と絡めやすい境界条件を使った場合を見ていきます。ポ
テンシャルを

V =

{
∞ |L| > x
0 |L| < x

とします。これは、箱を x = 0から x = Lに置かずに、x = −Lから x = +Lに置いた場合になります。な
ので、境界条件は

ψ(−L) = 0 , ψ(L) = 0

となります。

　 ψ(x)は (5)から

ψ(x) = B1e
ikx +B2e

−ikx (k2 =
2mE

ℏ2
)

13



境界条件から

ψ(−L) = B1e
−ikL +B2e

ikL = 0

ψ(+L) = B1e
ikL +B2e

−ikL = 0

exp部分が 1になるようすれば A = −B となって、同じ結果になります。しかし、(7)から

X(−L) = (B1 +B2) cos(kL)− i(B1 −B2) sin(kL)

X(+L) = (B1 +B2) cos(kL) + i(B1 −B2) sin(kL)

なので、B1 +B2 = 0で sin(kL) = 0だけでなく、B1 −B2 = 0で cos(kL) = 0でも今は境界条件を満たすこ
とが分かります ((7)のときでは片方の条件がX(0) = 0だったために、B1 +B2 = 0を選ぶしかなかった)。
というわけで、これら 2つの場合が出てきます。C1 = B1 +B2, C2 = B1 −B2 とします。

　 C1 = 0, sin(kL) = 0では

knL = πn (n = 1, 2, . . .)

C2 = 0, cos(kL) = 0では

knL =
π

2
n (n = 1, 3, 5, . . .)

箱の場合と同じように、nを 1以上の整数にしています。kn の形をそろえるために、sin(kL)の方を

knL =
π

2
n (n = 2, 4, 6, . . .)

とすれば、それぞれの場合で

ψ(x) =


C1 cos(

πn

2L
x) (n = 1, 3, 5, . . .) |L| < x

C2 sin(
πn

2L
x) (n = 2, 4, 6, . . .) |L| < x

0 |L| > x

cosは偶関数 (cos(−θ) = cos θ)、sinは奇関数 (sin(−θ) = − sin θ)なので、それぞれの波動関数も偶関数、奇
関数です。波動関数が偶関数のときをパリティ(parity、偶奇性)が正や偶、奇関数のときをパリティが負や
奇と言います。パリティは単なる関数の区別としてだけでない重要なものです。分かりやす例は、素粒子で
のパリティの破れです。

　エネルギー E を求めます。cos, sinはどちらかが 1のときはもう片方が 1なので

ψ(x) =

 C1 cos(
πn

2L
x) + C2 sin(

πn

2L
x) (n = 1, 2, 3, . . .) |L| < x

0 |L| > x
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とまとめて書けます。なので、エネルギー En は

2mEn

ℏ2
= (

π

2L
n)2

En =
π2ℏ2

8mL2
n2 =

ℏ2k2n
2m

(n = 1, 2, 3, . . .)

となります。

　規格化は C1, C2 を別々に行えばいいだけなので

∫ L

−L

|C1 cos(
πn

2L
x)|2dx = 1 ,

∫ L

−L

|C2 sin(
πn

2L
x)|2dx = 1

から

C1 =

√
1

L
, C2 =

√
1

L

となります。

　ついでに、閉じ込められている粒子がポテンシャルの壁に及ぼす圧力 (力)も出してみます。ポテンシャルの
壁は粒子と衝突しても動かないとし、完全弾性衝突とします。また、粒子は最低エネルギーである n = 1(基
底状態)とします。また、話の流れから、ポテンシャルの壁に対する圧力としますが、粒子を閉じ込めてい
る箱の壁としても同じことです。大まかな話しかしないので、細かい話は気体運動や熱力学についての本と
かを見てください。

　気体運動についていろいろとやっていくと

PV = mv2

という関係式が導かれます (1次元の場合)。P は圧力、V は 1次元体積、mは質量、vは気体の速度です。
これは壁に及ぼす力積が 2mvということを使えば求めることができます。今求めたエネルギーEnは運動エ
ネルギーと考えられるので (ポテンシャルがない領域だから)

1

2
PV =

1

2
mv2

と変形して右辺に En=1 を入れれば

P =
2

V
E1 =

π2ℏ2

8mL3
(V = 2L)

となって、粒子がポテンシャルの壁に及ぼす圧力を求められます。

・補足 1
　井戸型ポテンシャルで偶関数、奇関数が出てくる理由に触れておきます。今の時間独立なシュレーディンガー方
程式は
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(− ℏ2

2m

∂2

∂x2
+ V (x))χ(x) = Eχ(x)

xを −xに変えると

(− ℏ2

2m

∂2

∂x2
+ V (−x))χ(−x) = Eχ(−x)

このとき、ポテンシャルが偶関数なら

(− ℏ2

2m

∂2

∂x2
+ V (x))χ(−x) = Eχ(−x)

元の式と比較すれば、χ(x)と χ(−x)は同じ固有値に対応する固有関数です。なので、違いは適当な係数だけで

χ(x) = Aχ(−x)

ただし、縮退していないとします。縮退していると、同じ固有値に対応している固有関数を、χ(x) = Aχ(−x)の
ように係数の違いだけと言えなくなるからです。
　さらに xを −xに変えれば、χ(−x) = Aχ(x)となります。そうすると、χ(x)は

χ(x) = Aχ(−x) = A2χ(x)

となる必要があり、A = ±1です。よって、

χ(x) = +χ(−x) , χ(x) = −χ(−x)

から、偶関数 (パリティが正)、奇関数 (パリティが負)のどちらも固有関数になります。

・補足 2
　ポテンシャルのないときの解では、どちらの境界条件でもエネルギーは離散的になっていますが、Lを大きく
取れば連続値とみなすことができ、近似的に連続値として扱えます。このことをパウリの排他律と絡めて簡単に
見ておきます。
　量子力学には、電子は 1 つの状態に１個しか入れないという性質があり、パウリの排他律 (Pauli exclusion
principle)と呼ばれます。このため、電子が可能なあるエネルギー状態には 1つの電子しか入れません。
　周期的境界条件を使い、エネルギー En は

En =
ℏ2k2n
2m

(kn =
2πn

L
)

とします。このときの可能なエネルギーは nで区別されます。自然現象はエネルギーが低い方に行く性質がある
ので、電子は低いエネルギーを取ろうとします。なので、電子 1個ずつが一番低いエネルギーから順に高いエネ
ルギーを取っていきます。
　N 個の電子があるとして、最大の波数を持っているものを kN とします。k1 から kN までのそれぞれの波数を
全て足すなら

N∑
n=1

kn =

N∑
n=1

2πn

L

ここで、周期の長さ Lが無限大になっていると考えます (無限大まででないにしろ、2πに比べて十分大きい)。こ
れを
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N∑
n=1

kn =

N∑
n=1

kn
L

2π

2π

L

と置き換えると、2π/Lは Lの無限大において微小な値 ∆kとみなせます (間隔 2π/Lは kn と kn+1 の差)。そう
すると、Lの無限大の極限において和は

L

2π

N∑
n=1

kn∆k ⇒ L

2π

∫ kN

0

dk k

として積分になります。実際に、具体的に見てみると、和は

N∑
n=1

kn =

N∑
n=1

2πn

L
=

2π

L

N(N + 1)

2

これは単純な和の公式です。N が大きければ、N はN2 に比べて無視できるので

2π

L

N(N + 1)

2
≃ 2πN2

2L
=

L

4π
k2N

積分では

L

2π

∫ kN

0

dk k =
L

4π
k2N

となるので、一致します。
　このように、離散的な値は、近似的に連続値となり積分に置き換わります。ここでのように Lと個数N が積分
に持っていけるほど十分大きいという状況は、金属中での電子を扱うときに使われ、近似的として良いと考えら
れています (Lは金属 (金属結晶)の長さ)。
　ここで導入した最大の波数 kN はフェルミ波数と呼ばれ、この波数に対応するエネルギーのことをフェルミエネ
ルギーと言います。これは物性に行くと必ず出会う大事な量です。また、スピンを考慮に入れれば、個数を求める
時には 2倍されることになります。
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