
スピン

シュテルン・ゲルラッハの実験に触れてからスピンを導入します。

出てくる電磁気の話はよくある内容なので説明なしで結果を使ってしまいます。

ここでの磁場は磁束密度のことです。

　シュテルン・ゲルラッハ (Stern-Gerlach)の実験は、銀原子を一様でない磁場中を通過させてスクリーンに当て

るというものです。銀原子は全体として中性なのでローレンツ力を受けないことから、磁場中に銀原子を飛ばし

て軌道が曲げられるなら、銀原子は磁気モーメントを持つと考えられます。これを利用して、磁気モーメントが

離散的になるかを確かめるために行われました。また、この実験は量子力学が定式化されていない時期 (前期量子

論)に行われたものです。

　古典的に見ていきます。磁気モーメント µを持つ電気的に中性の粒子を磁場 (磁束密度)B に飛ばすとします。

磁場と磁気モーメントによる相互作用のエネルギーは V = −µ ·B/βbで与えられます（電磁気学の「双極子」参
照）。βbは比例定数で、単位系が SIなら 1、CGSガウスやヘヴィサイド・ローレンツなら光速 cです。V は運動

方程式でのポテンシャルなので、物体の質量をM とすれば運動方程式は

M
d2x

dt2
= − 1

βb
∇V =

1

βb
∇(µ ·B)

このように磁場中の物体は µに依存した力を受けて運動します。これを原子に使います。

　ボーアの原子模型のように、電子が原子内で等速円運動しているとします。電子は速度 vで半径 rの等速円運動

しているとし、電子の電荷は −e (e > 0は素電荷)とします。線上を流れる電流は単位時間あたりの電荷なので、

1周する時間 2πr/vによって

I =
−ev
2πr

(v = |v|)

このときの磁気モーメントは円運動の法線方向 nを向き、nはベクトル積から

n =
r × v

|r × v|
=

r × v

rv
(r = |r|)

等速円運動なので rと vは直交します。磁気モーメントは電流と円の面積の積で与えられ

µ =
−ev
2πr

πr2n = −e
2
vr

r × v

rv
= −e

2
r × v = − e

2me
r ×mev = − e

2me
L

me は電子の質量、Lは電子の軌道角運動量 (力学での角運動量)です。

　このように、等速円運動している電子による磁気モーメントを原子が持つとすれば、z軸方向のみに磁場が作用

していると

M
d2x

dt2
=

1

βb
µz∇Bz

という力を受けてスクリーンに向かいます。µは原子の位置とは無関係なので微分の外に出せます。

　実験では磁気モーメントの方向は気にせずに原子を飛ばすので、磁場中を抜けてスクリーンに到達する原子は

運動方程式を元にした連続的な確率分布に従うはずです。しかし、銀原子を飛ばすと、スクリーン上の分離した 2

つの地点に分布します。なので、今のような古典的な考え方は使えません。
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　古典的に説明できないので量子力学の考えに従って軌道角運動量を離散化すれば、「角運動量演算子」で示した

ように磁気モーメントは−lから+lまでの整数による離散値を持ちます。しかし、例えば−1, 0,+1のように 0を

含むために奇数個に分離するはずです。なので、これでも説明できません。

　同様の実験が水素原子でも行われ、同じ結果が得られました (Phippsと Taylorによる実験)。水素原子では電

子が 1個で、基底状態として実験すればその軌道角運動量は 0にできます。このため、軌道角運動量でない量に

よって磁気モーメントが現れることがよりはっきりしました。

　というわけで、実験の説明には新しい量が必要になり、それをスピン角運動量 (spin angular momentum)と呼

びます。スピン角運動量は、軌道角運動量と同じように磁気モーメントを作り、「角運動量演算子」での話が使え

るとされます。そうすると、角運動量が 1/2のとき−1/2,+1/2の 2つの固有状態を持つので、この 2つの区別に

よる磁気モーメントのために磁場を通過すると 2つに分離する結果になると言えます。このことから、実験結果は

電子がスピン角運動量 1/2を持つためとして説明されます (銀原子には 47個の電子があり、46個はお互いのスピ

ン角運動量を打ち消し合うように組まれており、残りの 1個によってスピン角運動量の磁気モーメントを与える)。

　スピン角運動量は、質量や電荷のように粒子そのものが持っている性質とされています。これは軌道角運動量の

ような古典論の中に対応する量がないために、それ以上の説明ができないからです。なので、スピン角運動量は

粒子が持っている何かしらの性質で、数学的な記述でしか説明できないと思っていたほうが余計な混乱が起きな

いです (数式上で説明するしかないから分かりづらい)。

　スピン角運動量は角運動量を省いてスピンと呼ぶことが多く、ここからスピンと言っていきます。

　角運動量の寄与が式上ではっきり分かるので、電磁場中のシュレーディンガー方程式を求めます。まず、古典

的とし、電磁場の中に荷電粒子を置いたときのハミルトニアンを求めます。電荷 Q (電子なら eを素電荷として

Q = −e)を持つ粒子が電磁場から受ける力はローレンツ力なので

F = Q(E(x, t) + β−1
b v ×B(x, t))

E は電場、B は磁場 (磁束密度)、v は電荷 Qを持つ荷電粒子の速度です。これによって、質量mの荷電粒子の

運動方程式は

m
d2x

dt2
= Q(E + β−1

b v ×B)

このときのラグランジアンを求めますが、速度がいるのでローレンツ力は保存力ではないです。というわけで、保

存力でなくてもオイラー・ラグランジュ方程式から運動方程式が出てくるように作ります。

　ローレンツ力をスカラーポテンシャル Φ(x, t)とベクトルポテンシャルA(x, t)を使った形に変形します。ベク

トル公式を使って変形すると

F = Q(− 1

βb

∂A

∂t
−∇Φ) +

Q

βb
v × (∇×A) (B = ∇×A , E = − 1

βb

∂A

∂t
−∇Φ)

= Q(−(β−1
b

dA

dt
− β−1

b (v · ∇)A)−∇Φ) +Qβ−1
b (∇(v ·A)− (v · ∇)A)

= Q(− 1

βb

dA

dt
+

1

βb
(v · ∇)A−∇Φ) +

Q

βb
(∇(v ·A)− (v · ∇)A)

= Q(− 1

βb

dA

dt
−∇Φ) +

Q

βb
∇(v ·A) = −Q 1

βb

dA

dt
−Q(∇Φ− 1

βb
∇(v ·A))

2行目の偏微分からの変換にはAが時間 tと座標 x = (x, y, z)の関数なので

dA

dt
=
∂A

∂t
+
dx

dt

∂A

∂x
+
dy

dt

∂A

∂y
+
dz

dt

∂A

∂z
=
∂A

∂t
+ (v · ∇)A
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と変形しています。第二項が保存力でのポテンシャル U での F = −∇U と同じ形なので

U(x,v) = Q(Φ− β−1
b (v ·A)) (v =

dx

dt
)

とします。これを x成分で微分すると

∂U

∂x
= Q

∂Φ

∂x
− Q

βb

∂

∂x
(v ·A) = Q

∂Φ

∂x
− Q

βb

∂

∂x
(vxAx + vyAy + vzAz)

d

dt

∂U

∂vx
= −Q

βb

d

dt

∂

∂vx
(v ·A) = −Q

βb

d

dt

∂

∂vx
(vxAx + vyAy + vzAz) = −Q

βb

dAx

dt

となり、他の成分も同様なので

d

dt

∂U

∂v
= −Qβ−1

b

dA

dt
,
∂U

∂x
= Q(∇Φ− β−1

b ∇(v ·A)) (∇ =
∂

∂x
)

これらから、ローレンツ力は

F =
d

dt

∂U

∂v
− ∂U

∂x

と書けます。

　一方で、運動エネルギー T を

T =
1

2
m|v|2

とすれば

d

dt

∂T

∂v
=

1

2
m
d

dt

∂

∂v
(v · v) = m

d

dt
v = m

d2x

dt2

から、運動方程式を

d

dt

∂T

∂v
− ∂T

∂x
= F (

∂T

∂x
= 0)

と与えられます。

　よって、T と U を合わせれば

d

dt

∂T

∂v
− ∂T

∂x
=

d

dt

∂U

∂v
− ∂U

∂x

d

dt

∂

∂v
(T − U)− ∂

∂x
(T − U) = 0

とでき、保存力の場合と同じようにラグランジアンを
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L = T − U =
1

2
m|v|2 −Q(Φ− β−1

b (v ·A))

と与えられ、オイラー・ラグランジュ方程式

d

dt

∂L

∂v
− ∂L

∂x
= 0

から、電磁場中の荷電粒子の運動方程式

m
d2x

dt2
= Q(E + β−1

b v ×B)

が出てきます。

ハミルトニアンを求めます。ハミルトニアンH の定義は

H(x,p) = p · v − L(x,v)

pは共役な運動量で

p =
∂L

∂v

と定義されています。p = (px, py, pz)は

px =
∂L

∂vx
=

1

2
m

∂

∂vx
(v2x + v2y + v2z) +Qβ−1

b

∂

∂vx
(vxAx + vyAy + vzAz) = mvx +Qβ−1

b Ax

となり、他の成分も同様なので

p = mv +Qβ−1
b A

ハミルトニアンは x,pに依存するので、vを

v =
1

m
(p−Qβ−1

b A) , |v|2 =
1

m2
(p−Qβ−1

b A)2

と書き換えることで、ハミルトニアンは

H(x,p) = p · v − L(x,v)

=
1

m
p · (p−Qβ−1

b A)− (
1

2m
(p−Qβ−1

b A)2 −QΦ+Qβ−1
b

1

m
(p−Qβ−1

b A) ·A)))

=
1

m
(p−Qβ−1

b A)2 − 1

2m
(p−Qβ−1

b A)2 +QΦ

=
1

2m
(p−Qβ−1

b A)2 +QΦ
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これが求めたかったハミルトニアンです。

　今の導出から分かるように、ここで求めたラグランジアンとハミルトニアンは電磁場中の荷電粒子を記述する

もので、電磁場を記述する項はいません (マクスウェル方程式を導くための項がラグランジアンにない)。ハミル

トニアンは vを使うと

1

2m
(p− Q

βb
A)2 +QΦ =

1

2
m|v|2 +QΦ

となって、運動エネルギーとスカラーポテンシャル Φとの電荷 Qでのポテンシャル QΦとの和による全エネル

ギーになっています (磁場はエネルギーに絡んでこないのでラグランジアンでのAの項が消えている)。ここら辺

は電磁気の話なので飛ばします。

　これを正準量子化の手続きに従って共役運動量 pを −iℏ∇に変えることで、ハミルトニアン演算子は

Ĥ =
1

2m
(−iℏ∇− Q

βb
A)2 +QΦ

これで電磁場中の荷電粒子のハミルトニアンがわかったので、電磁場中のシュレーディンガー方程式は

iℏ
∂

∂t
ψ =

( 1

2m

(
− iℏ∇− Q

βb
A
)2

+QΦ
)
ψ

また、変形して

(iℏ
∂

∂t
−QΦ)ψ =

( 1

2m

(
p̂− Q

βb
A
)2)

ψ (1)

と書くと、

iℏ
∂

∂t
⇒ iℏ

∂

∂t
−QΦ , p̂ = −iℏ∇ ⇒ p̂− Q

βb
A = −iℏ∇− Q

βb
A

という置き換えが行われているのが分かります。

　見てきたように電磁場は古典的な量のまま使われていて、量子化されているのは粒子だけです。これは、電磁

場は波動で、粒子の量子化によって粒子も波動となり、波動と波動の関係になっています。つまり、粒子を量子化

することで波動と波動という対等な関係になります。言い換えると、シュレーディンガー方程式とマクスウェル方

程式が同じ立ち位置にいます。この 2つは同じ方法でさらに量子化、つまり場の量子化 (第二量子化)と呼ばれる

ことが行われます。

　これで電磁場中のシュレーディンガー方程式が作れましたが、これにはスピンは含まれていません。それをはっ

きりさせます。

　磁場が一定のときでは

A =
1

2
B × x (B = ∇×A)

となっていればいいです。実際に、B が定数なので∇のベクトル公式から

∇×A =
1

2
∇× (B × x) =

1

2
(B∇ · x− (B · ∇)x) =

1

2
(3B − (Bx

∂

∂x
+By

∂

∂y
+Bz

∂

∂z
)(x, y, z))
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となり、各成分に対して∇×A = (3B −B)/2 = B です。z軸方向に一定としてB = (0, 0, B)とすれば

A =
1

2
B × x = (−By

2
,
Bx

2
, 0)

B は微小としてAの 2次は無視すれば

(p̂− Q

βb
A)2ψ = (p̂2 +

Q2

β2
b

A2 − Q

βb
p̂ ·A− Q

βb
A · p̂)ψ

≃ (p̂2 − Q

βb
(p̂ ·A)− Q

βb
A·̂p− Q

βb
A · p̂)ψ

= (p̂2 − 2
Q

βb
A·̂p)ψ

= (p̂2 − Q

βb
(B × x)·̂p)ψ

= (p̂2 − Q

βb
B · L̂)ψ (L̂ = x× p̂)

2行目では p̂は微分演算子なので p̂ ·Aは ψにも作用することを使い、最後へはベクトルの関係

(X × Y ) ·Z = −(Z × Y ) ·X

を使っています。角運動量 L = x× pから、L̂は角運動量演算子です。これを (1)に入れれば

iℏ
∂

∂t
ψ = (

p̂2

2m
− QB · L̂

2mβb
+QΦ)ψ (2)

右辺の括弧部分は古典的なハミルトニアンを演算子化したものです。なので、電子Q = −eではエネルギーとして

El =
eB ·L
2meβb

= µB
L

ℏ
·B (µB =

eℏ
2βbme

)

というものが加わっています。meは電子の質量で、µB はボーア磁子と呼ばれます。これは磁気モーメント µと

磁場によるエネルギー

V = −µ ·B

に対応しています。また、ボーア磁子の値は 9.274× 10−24[J ·T−1]です。Jはジュール、Tはテスラです (下の補

足も参照)。

　このように電磁場中のシュレーディンガー方程式には軌道角運動量による磁気モーメントからのエネルギーだけ

がいて、これによって磁場がないときに縮退していたエネルギー準位の分離を求められます (ゼーマン効果)。し

かし、その結果はスピンを無視したもので、スピンを考慮するとさらに複雑な分離が現れ、それが実験結果と一

致します。

　というわけで、スピンを導入します。スピンは軌道角運動量と同じように磁気モーメントを作るので、同じ形

にします。つまり、電子のスピンによる磁気モーメントを µs とし、磁場によって

6



Es = µs ·B = gµB
S

ℏ
·B

というエネルギーになるとします。軌道角運動量 Lの代わりのスピン S を使い、係数 gをつけています。gを g

因子と呼び、電子では g = 2と与えられます。S は

S =
ℏ
2
σ

として

Es = gµB
S

ℏ
·B =

g

2
µBσ ·B =

g

2

eℏ
2βbme

σ ·B

と書くことにします。

　 Es を電磁場中のハミルトニアンに加えることで (1)は、電子に対して (g = 2)

iℏ
∂

∂t
ψ =

( 1

2me
(p̂+

e

βb
A)2 +

eℏ
2meβb

σ ·B − eΦ
)
ψ

これをパウリ (Pauli)方程式と呼びます。しかし、これによって電磁場中の電子を記述するためには、σはただの

3次元ベクトルでなく 2× 2行列による 3次元ベクトルになる必要があります。このため、波動関数 ψも 2× 1行

列になります (2個の連立方程式になる)。σはパウリ行列と呼ばれます。スピンとの関係は「スピン 1/2」で触れ

ます。また、S や σはスピン演算子と呼ばれます。

　 (2)にスピンの項を加えると

iℏ
∂

∂t
ψ = (

p̂2

2me
+
eL̂ ·B
2meβb

+
eℏ

2meβb
σ ·B − eΦ)ψ

= (
p̂2

2me
+

e

2meβb
(̂L+ ℏσ) ·B − eΦ)ψ

このように、軌道角運動量とスピンの和になります。なので、全角運動量と言ったときは軌道角運動量とスピンの

和を指します。

　また、パウリ方程式でも原子のエネルギー準位の実験結果と一致しません。原子内には、軌道角運動量が作る

磁場 (電子が静止し原子核が円運動して電流を作っていると見れば、その電流による磁場が電子に作用する)があ

るので、その内部磁場とスピンの相互作用を考える必要があります。このスピンと内部磁場による相互作用はス

ピン軌道相互作用と呼ばれます。

　最後に電子のスピンの期待値を簡単な場合で求めます。スピン S は演算子として角運動量演算子の交換関係を

持たせるので

[Lx, Ly] = iℏLz , [Lz, Lx] = iℏLy , [Ly, Lz] = iℏLx

から

[Sx, Sy] = iℏSz , [Sz, Sx] = iℏSy , [Sy, Sz] = iℏSx
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とします。また

2

ℏ
S = σ

なので

[
2

ℏ
Sx,

2

ℏ
Sy] = i

4

ℏ2
ℏSz

[σx, σy] = 2iσz

から、パウリ行列の交換関係は

[σx, σy] = 2iσz , [σz, σx] = 2iσy , [σy, σz] = 2iσx

となります。

　 z方向のみに一定の磁場が作用しており、電子は止まっていてスピンの寄与だけがあるとします。そうすると、

パウリ方程式でスピンの項だけ残して

iℏ
∂

∂t
ψ =

e

meβb
SzBzψ

z方向のスピンの期待値を < Si >= ⟨ψ; t|Si|ψ; t⟩とします。これを時間微分すると

∂

∂t
⟨ψ; t|Si|ψ; t⟩ =

∂

∂t
(⟨ψ; t|)Si|ψ; t⟩+ ⟨ψ; t|Si

∂

∂t
|ψ; t⟩

= − 1

iℏ
(⟨ψ; t|H)Si|ψ; t⟩+

1

iℏ
⟨ψ; t|SiH|ψ; t⟩ (iℏ

∂

∂t
|ψ; t⟩ = H|ψ; t⟩)

=
i

ℏ
⟨ψ; t|(HSi − SiH)|ψ; t⟩

=
i

ℏ
⟨ψ; t|[H,Si]|ψ; t⟩

今のハミルトニアン演算子H は

H =
e

meβb
SzBz

なので、交換関係は

[H.Sx] =
e

meβb
[SzBz, Sx] =

e

meβb
Bz[Sz, Sx] = i

eℏ
meβb

BzSy

[H.Sy] =
e

meβb
Bz[Sz, Sy] = −i eℏ

meβb
BzSx

[H.Sz] =
e

meβb
Bz[Sz, Sz] = 0
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よって、スピンの期待値は

∂

∂t
< Sx >= − eBz

meβb
< Sy > ,

∂

∂t
< Sy >=

eBz

meβb
< Sx > ,

∂

∂t
< Sz >= 0

これは単純な連立微分方程式なので

< Sx >= C cosωt , < Sy >= C sinωt , < Sz >= const (ω =
eBz

me
)

と求まり (C は定数)、スピン S の期待値 < S >は、2次元円運動と同じ周期的な値を持ちます (z 軸を中心とす

る xy 平面上の 2次元円の位置ベクトル)。ω をラーモア振動数と言います。これは単純な結果ですが、実験での

確認が取れやすいものです。

・補足

　ボーア磁子の値は単位を揃えれば、電磁気の単位系の選び方に依存しないです。ボーア磁子の次元は、L,M, T

を長さ、質量、時間の次元とし、電荷と βb の次元は {Q}, {βb}とすれば

eℏ
2βbme

⇒ {Q}L2MT−1

{βb}M
=

{Q}L2T−1

{βb}
= L2MT−2 T

M

{Q}
{βb}

= {E} T
M

{Q}
{βb}

{E}はエネルギーの次元です。磁場の次元は、電流の次元を {I} = {Q}T−1 として

{B} = {βm}{βb}
{I}
L

となっており (電磁気学の「電磁気の単位系」参照)、これが出てくるように変形すると

{E} T
M

{Q}
{βb}

= {E}T
2

M

{I}
{βb}

= {E}T
2

M

{I}
{βb}

1

{B}
{βm}{βb}{I}

L
=

{E}
{B}

T 2

LM
{βm}{I}{I}

2つの長さ lの直線の導線を平行に並べて、それぞれに電流 I1, I2 を流したときに導線間に作用する力 F は、ビ

オ・サバールの法則から

F

l
= 2βm

I1I2
r

⇒ LMT−2 = {βm}{I}{I}

rは導線間の距離です。これから、ボーア磁子の次元は

eℏ
2βbme

⇒ {E}
{B}

T 2

LM
{βm}{I}{I} =

{E}
{B}

T 2

LM
LMT−2 =

{E}
{B}

として、エネルギーの次元を磁場の次元で割ったものになります。比例定数の次元を含んでいないので、磁場の単

位間の換算を与えれば、どの単位系でも値は同じになります。

　 SIで直接計算してみます。このときは
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e ≃ 1.6× 10−19[C]

ℏ ≃ 1.055× 10−34[m2 · kg · s−1] = 1.055× 10−34[J · s]

me ≃ 9.1× 10−31[kg]

[T] = [N ·A−1 ·m−1] = [kg · s−2 ·A−1]

N = m · kg · s−2はニュートン、J = m2 · kg · s−2はジュール、Cはクーロン、Tはテスラです。磁場の単位をガウ

ス Gにするなら

1[T] = 104[G]

とすればいいだけです。SIでは βb = 1なので、これらを入れて

eℏ
2me

≃ 9.27× 10−24[J · T−1]

単位は

[
eℏ
2me

] = [C ·m2 · kg · s−1 · kg−1] = [A · s ·m2 · s−1] = [A ·m2]

Aはアンペアで、C = A · sです。ジュールとテスラを使うことで

[
eℏ
2me

] = [C · J · s · kg−1] = [A · s · J · s · kg−1] = [J · kg−1 · s2 ·A] = [J · T−1]

となります。

　 CGSガウス単位系では電荷の単位をクーロンで与えず、βb は光速 cになります。このときは

e ≃ 4.8× 10−10[dyn1/2 · cm] = 4.8× 10−10[cm3/2 · g1/2 · s−1] = 4.8× 10−13 × 10−3/2[m3/2 · kg1/2 · s−1]

ℏ ≃ 1.055× 10−34[m2 · kg · s−1] = 1.055× 10−27[cm2 · g · s−1]

me ≃ 9.11× 10−28[g] = 9.11× 10−31[kg]

c ≃ 2.9979× 1010[cm · s−1] = 2.9979× 108[m · s−1]

1[T] = 104[dyn1/2 · cm−1] = 104[cm−1/2 · g1/2 · s−1] = 105 × 10−3/2[m−1/2 · kg1/2 · s−1]

これらを入れれば
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eℏ
2cme

≃ 9.27× 10−21[cm5/2 · g1/2 · s−1]

= 9.27× 10−21[cm2 · g · s−2 · cm1/2 · g−1/2 · s]

= 9.27× 10−21 × 10−4 × 10−3 × 10−1 × 103/2[m2 · kg · s−2 ·m1/2 · kg−1/2 · s]

= 9.27× 10−29 × 103/2 × 105 × 10−3/2[J · T−1]

= 9.27× 10−24[J · T−1]

となります。
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