
スピン 1/2

角運動量演算子の例としてスピン 1/2の場合を見ていきます。「角運動量演算子」と「角運動量の合成」の結果を

使っています。

スピン 1/2での基本的な関係を導出しているだけです。

　角運動量演算子 J = (J1, J2, J3)は

[Ja, Jb] = iℏϵabcJc

という交換関係に従うエルミート演算子です。ϵabc はレヴィ・チビタ記号です (ϵ123 = +1)。このとき、J の固有

状態と固有値は

J2|j,m⟩ = ℏ2j(j + 1)|j,m⟩ , J3|j,m⟩ = ℏm|j,m⟩

⟨j,m|j′,m′⟩ = δjj′δmm′

j = 0,
1

2
, 1,

3

2
, 2, . . . , m = −j,−j + 1, . . . , j − 1, j

と与えられます。J3 を J2 と同時固有状態を持つとしています。J2
1 , J

2
2 と J3 の交換関係は

[J2
1 , J3] = J1[J1, J3] + [J1, J3]J1 = −iℏJ1J2 − iℏJ2J1

[J2
2 , J3] = J2[J2, J3] + [J2, J3]J2 = iℏJ2J1 + iℏJ1J2

なので、[J2
1 + J2

2 , J3] = 0です。

j を 1/2とした場合を見ていきます。j が半整数になるのはスピン角運動量演算子のときで、1/2の粒子はスピン

1/2を持つと言われます。スピン角運動量は単にスピン、スピン角運動量演算子はスピン演算子と言っていきます。

　 j = 1/2とするので、mは

m = +
1

2
,−1

2

という 2つだけになり、固有状態と固有値は

J2|j = 1

2
,m = ±1

2
⟩ = 3

4
ℏ2|j = 1

2
,m = ±1

2
⟩

J3|j =
1

2
,m =

1

2
⟩ = ℏ

2
|j = 1

2
,m =

1

2
⟩ , J3|j =

1

2
,m = −1

2
⟩ = −ℏ

2
|j = 1

2
,m = −1

2
⟩

このようにスピン 1/2と言った時、J3の固有値は±ℏ/2となります。このときの状態は J3の固有状態なので、ス

ピンの向きが第 3成分方向である状態と言われます (例えば、xyz平面で言えばスピンが z軸方向を向いている状

態)。+ℏ/2 (m = +1/2)のときを上向きスピン、−ℏ/2(m = −1/2)のときを下向きスピンと呼び、上向きの方が

第 3成分の方向を向き、下向きが逆向きと言われます。
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　固有状態が ±ℏ/2の 2つしかないことから (スピンが 2つの向きしか取れない)

|j = 1

2
,m =

1

2
⟩ = |+⟩ , |j = 1

2
,m = −1

2
⟩ = |−⟩

や

|j = 1

2
,m =

1

2
⟩ = | ↑⟩ , |j = 1

2
,m = −1

2
⟩ = | ↓⟩

と表記されます。ここでは |±⟩の表記を使っていきます (J3 の固有状態であることを強調させるために 3の添え

字を付けて書く場合もあります)。ついでに、固有値の ℏを外すために ℏS = J とします。こうすれば

S3 =
1

2
|+⟩ , S3 = −1

2
|−⟩ ([Sa, Sb] = iϵabcSc) (1)

となり、固有値から ℏが省けます。ここからスピン演算子は S を指すことにします。

　スピン演算子はエルミート演算子で、エルミート演算子の固有状態は正規直交系を作ります。なので、直交性

⟨+|+⟩ = ⟨−|−⟩ = 1 , ⟨−|+⟩ = ⟨+|−⟩ = 0

と、完全性

∑
m=±1/2

|1
2
,m⟩⟨1

2
,m| = |+⟩⟨+| + |−⟩⟨−| = 1

を持っています。

　 |±⟩を行列で書きます。固有状態が 2個なので (2次元ベクトル空間)、2成分あればいいことから

|+⟩ ⇒

(
a+

b+

)
, |−⟩ ⇒

(
a−

b−

)

矢印にしているのは 2次元ベクトル空間での行列に対応させているという意味からです。ここから |±⟩はこの 2×1

行列を表すとします。直交性から a±, b± は

|a+|2 + |b+|2 = 1 , |a−|2 + |b−|2 = 1 , a∗−a+ + b∗−b+ = a∗+a− + b∗+b− = 0

また、完全性は行列のクロネッカー積の規則から

(
a+

b+

)
(a∗+ b∗+) =

(
|a+|2 a+b

∗
+

b+a
∗
+ |b+|2

)
,

(
a−

b−

)
(a∗− b∗−) =

(
|a−|2 a−b

∗
−

b−a
∗
− |b−|2

)

なので

a+b
∗
+ + a−b

∗
− = 0 , b+a

∗
+ + b−a

∗
− = 0
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ただし、|+⟩⟨+| + |−⟩⟨−| = 1の 1は単位行列です。これ以降も単位行列があることは明確に書いていきません。

これらは例えば a+ = b− = 1, a− = b+ = 0で成立するので

|+⟩ ⇒

(
1

0

)
, |−⟩ ⇒

(
0

1

)

としてみます。

　次にこれに作用させることで固有状態 (固有ベクトル)、固有値の関係 (1)を作れる行列 Sa を作ります（「D行

列の計算」でも別の方法で求めている）。|±⟩での 2× 1行列をを固有ベクトル、±1/2を固有値とする行列は

S3 =
1

2

(
1 0

0 −1

)

であればいいことはすぐに分かります (転置して複素共役を取っても変わらないのでエルミート行列)。他の成分

も求めます。

　そのための関係を出します。Sa の交換関係 [S2, S3] = iS1 に左から S2 をかけたものと、右から S2 をかけたも

のを足して

iS2S1 + iS1S2 = S2[S2, S3] + [S2, S3]S2

= S2(S2S3 − S3S2) + (S2S3 − S3S2)S2

= S2
2S3 − S2S3S2 + S2S3S2 − S3S

2
2

= S2
2S3 − S3S

2
2

S2
3 は単位行列の形で、(S2

1 + S2
2 + S2

3)|±⟩ = 3ℏ2/4|±⟩なので、S2
1 , S

2
2 も単位行列の形になっているとします。単

位行列は他の行列と交換するので

S1S2 + S2S1 = 0

同様に

S1S3 + S3S1 = 0 , S2S3 + S3S2 = 0

となり、a ̸= bでの反交換関係

{Sa, Sb} = 0 ({A,B} = AB +BA)

が出てきます。a = bなら 1/2なので、クロネッカーデルタを使えば {Sa, Sb} = δab/2です。交換関係と反交換関

係を合わせると

iS3 = {S1, S2}+ [S1, S2]

= S1S2 + S2S1 + S1S2 − S2S1

S1S2 =
i

2
S3
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同様にすることで、Sa は

S1S2 =
i

2
S3 , S3S1 =

i

2
S2 , S2S3 =

i

2
S1 (2)

という関係を持っていることも分かります。

　これで S1 を求められます。S1 を

S1 =
1

2

(
c11 c12

c21 c22

)

エルミート行列なので、c11 = c∗11, c22 = c∗22, c21 = c∗12 です。S3 との反交換関係を計算すれば

0 = S1S3 + S3S1

=
1

2

(
c11 c12

−c21 −c22

)
+

1

2

(
c11 −c12

c21 −c22

)

=

(
c11 0

0 −c22

)

から、c11 = c22 = 0が分かります。そして、c21 = c∗12 から

S2
1 =

1

4

(
0 c12

c∗12 0

)(
0 c12

c∗12 0

)
=

1

4

(
|c12|2 0

0 |c12|2

)

S2
1 は単位行列の形になるとしているので、|c12|2 = 1です。このため、c12 = eiϕ (ϕは実数)となります。

　 S2 は (2)から

S2 = − 2iS1S3

= − i

2

(
1 0

0 −1

)(
0 eiϕ

e−iϕ 0

)

=
i

2

(
0 −eiϕ

e−iϕ 0

)

これで、Sa の関係と (1)を満たす行列が求まりました。行列には任意の ϕがいますが、ϕ = 0として

S1 =
1

2

(
0 1

1 0

)
=

1

2
σ1 , S2 =

1

2

(
0 −i

i 0

)
=

1

2
σ2 , S3 =

1

2

(
1 0

0 −1

)
=

1

2
σ3

σa はパウリ行列です。Sa の関係からパウリ行列の関係は

[σa, σb] = 2iϵabcσc , {σa, σb} = 2δab

σ2
1 = σ2

2 = σ2
3 = 1

σ1σ2 = iσ3 , σ3σ1 = iσ2 , σ2σ3 = iσ1 (3)
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となり、2× 1行列としての |±⟩に対して

σ1|±⟩ = |∓⟩ , σ2|±⟩ = ±i|∓⟩ , σ3|±⟩ = ±|±⟩ (4)

パウリ行列だと 1/2も省かれるので、余計な係数がなくなり便利です (スピンの符号だけが取り出される)。

　今度は、一般的な方向を向いたスピンの固有状態を作ります。そのためにスピンに対する回転を作ります。ここ

で問題になるのがスピン (スピン上向き、下向きの状態 |±⟩)に対する回転は何かという点です。例えば位置ベクト
ルならベクトルの回転を行えばいいですが、スピンは位置ベクトルではないですし、具体的なイメージを持てる対

象ではないです。というわけで、ベクトルの回転をスピンの状況に合わせることでスピンの回転変換を与えます。

　そのために、3次元ベクトルの回転を持ってきます。位置の状態の回転は

|x′⟩ = exp[− i

ℏ
θn · J ]|x⟩

と与えられます (時計回りの回転)。nは任意の回転軸の単位ベクトル、J は軌道角運動量演算子 x× pです。軌

道角運動量演算子によって位置の回転が与えられるので、スピン演算子を使えばスピンの回転になると考えられ

ます。よって、スピンの状態 |±⟩に対する任意の n軸周りの回転演算子は

Rn(θ) = exp[−iθn · S] = exp[− i

2
θn · σ] (S =

1

ℏ
J)

となります。この回転行列を |±⟩に作用させれば、任意の方向を向いたスピンになります。
　 exp内に行列がいると面倒なので、行列部分を外に出します。そのために、パウリ行列 σa の関係

(σ · V )(σ ·W ) = V ·W + iσ · (V ×W ) ⇒ (σ · n)(σ · n) = n · n = 1

を使うことで、Rn(θ)は (θ′ = θ/2)

exp[−iθ′n · σ] = 1− iθ′n · σ +
1

2!
(iθ′n · σ)2 − 1

3!
(iθ′n · σ)3 + 1

4!
(iθ′n · σ)4 − 1

5!
(iθ′n · σ)5 + · · ·

= 1− iθ′(n · σ)− 1

2!
θ′2 +

1

3!
iθ′3(n · σ) + 1

4!
θ′4 − 1

5!
iθ′5(n · σ) + · · ·

= cos θ′ − i(n · σ) sin θ′

となります。cos θと sin θのテーラー展開

cos θ = 1− 1

2!
θ2 +

1

4!
θ4 − · · ·

sin θ = θ − 1

3!
θ3 +

1

5!
θ5 − · · ·

を使っています。これで行列部分であるパウリ行列が外に出てきています。

　 |±⟩の任意の軸周りの回転は

|±′⟩ = Rn(θ)|±⟩

Rn(θ) = exp[− i

2
θn · σ] = cos

θ

2
− i(n · σ) sin θ

2
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によって与えられます。ここで分かるのが 2π回転させたとき

|±′⟩ = Rn(2π)|±⟩ = −|±⟩

となって、元に戻らないことです。4π回転させれば

|±′⟩ = Rn(4π)|±⟩ = |±⟩

となり、元に戻ります。これがスピン 1/2のときの特徴で、回転によって元に戻すには 4π回転させる必要があり

ます。

　 |±⟩に Rn(θ)を作用させて任意の方向に向けたときの |±′⟩を求めます。向けたい方向の単位ベクトルを eとし

ます。|+⟩は第三成分の方向なので、これは極座標 (α, β) (半径 rは 1)を使えば、eは第二成分の方向周りに α回

転させて、第三成分の方向に β 回転させた位置にいると出来ます (x, y, z 軸で言えば、y軸周りに α回転させて、

z軸周りに β 回転させる )。まず、α回転は第二成分の軸周りの回転なので、n = (0, 1, 0)として

R2(α) = cosα− iσ2 sinα

β 回転は第三成分の軸周りなので n = (0, 0, 1)から

R3(β) = cosβ − iσ3 sinβ

簡単のために α/2, β/2を単に α, β と書いて、最後に戻します。これらから

R3(β)R2(α) = (cosβ − iσ3 sinβ)(cosα− iσ2 sinα)

= cosα cosβ − iσ2 sinα cosβ − iσ3 cosα sinβ − σ3σ2 sinα sinβ

= cosα cosβ − i

(
0 −i

i 0

)
sinα cosβ − i

(
1 0

0 −1

)
cosα sinβ −

(
0 −i

−i 0

)
sinα sinβ

各成分 (a, b)は

(1, 1) : cosα cosβ − i cosα sinβ = e−iβ cosα

(1, 2) : − sinα cosβ + i sinα sinβ = −e−iβ sinα

(2, 1) : sinα cosβ + i sinα sinβ = eiβ sinα

(2, 2) : cosα cosβ + i cosα sinβ = eiβ cosα

となっているので、任意の方向 eを向いている上向きスピンの状態は
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|+; e⟩ = R3(β)R2(α)|+⟩

=

(
e−iβ cosα −e−iβ sinα

eiβ sinα eiβ cosα

)(
1

0

)

=

(
e−iβ cosα

eiβ sinα

)

⇒

 e−iβ/2 cos
α

2
eiβ/2 sin

α

2


最後の矢印は省いていた 1/2を戻しているだけです。下向きでは

|−; e⟩ =

(
e−iβ cosα −e−iβ sinα

eiβ sinα eiβ cosα

)(
0

1

)

⇒

 −e−iβ/2 sin
α

2
eiβ/2 cos

α

2


となります。状態は位相因子 eic がいても物理を変更しないことから、eiβ/2 ずらして

|+; e⟩ =

 cos
α

2
eiβ sin

α

2

 , |−; e⟩ =

 − sin
α

2
eiβ cos

α

2


とする場合もあります。

　これで正しいことを確かめるために固有値を求めます。スピン演算子も eの方向に向けるので e ·Sとして作用
させます。eは極座標 (α, β)で

e = (sinα cosβ, sinα sinβ, cosα) (e · e = 1)

と書けるので

e · S = S1 sinα cosβ + S2 sinα sinβ + S3 cosα

=
1

2

(
0 sinα cosβ

sinα cosβ 0

)
+

1

2

(
0 −i sinα cosβ

i sinα cosβ 0

)
+

1

2

(
cosα 0

0 − cosα

)

=
1

2

(
0 sinα cosβ − i sinα sinβ

sinα cosβ + i sinα sinβ 0

)
+

1

2

(
cosα 0

0 − cosα

)

=
1

2

(
0 e−iβ sinα

eiβ sinα 0

)
+

1

2

(
cosα 0

0 − cosα

)

=
1

2

(
cosα e−iβ sinα

eiβ sinα − cosα

)
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よって

e · S|+; e⟩ = 1

2

(
cosα e−iβ sinα

eiβ sinα − cosα

) e−iβ/2 cos
α

2
eiβ/2 sin

α

2



=
1

2

 e−iβ/2(cosα cos
α

2
+ sinα sin

α

2
)

eiβ/2(sinα cos
α

2
− sin

α

2
cosα)



=
1

2

 e−iβ/2 cos
α

2
eiβ/2 sin

α

2


=

1

2
|+; e⟩

となるので

e · S|+; e⟩ = 1

2
|+; e⟩

となり、任意の方向を向いたスピン演算子 e · S の固有値は 1/2と確かめられます。下向きでも同様で

e · S|−; e⟩ = −1

2
|−; e⟩

となります。

　というわけで、例えば S1 の固有状態 |±; e1⟩は α = π/2, β = 0から

|+; e1⟩ =
1√
2

(
1

1

)
, |−; e1⟩ =

1√
2

(
1

−1

)

となります。

　スピン 1/2を持った 2つの系 A,B を合成した場合は「クレブシュ・ゴルダン係数の符号」で求めているので、

結果を今の表記に対応させます。2つの角運動量演算子A,B から J = A +B とした角運動量での J3 の固有状

態を |(jA, jB)j,m⟩としたとき、この状態は

|(jA, jB)j,m⟩ =
∑

mA,mB

C(jA, jB , j : mA,mB ,m)|jA,mA; jB ,mB⟩

|jA − jB | ≤ j ≤ jA + jB , −j ≤ m ≤ j

と展開されます。C(jA, jB , j : mA,mB ,m)はクレブシュ・ゴルダン係数、A3, B3での固有状態は |jA,mA⟩, |jB ,mB⟩
とし

|jA,mA; jB ,mB⟩ = |jA,mA⟩ ⊗ |jB ,mB⟩

としています。テンソル積 ⊗のことは気にしなくていいです。どちらもスピン 1/2とするので、jA = jB = 1/2

として
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|(1
2
,
1

2
)j,m⟩ =

∑
mA,mB

C(
1

2
,
1

2
, j : mA,mB ,m)|1

2
,mA;

1

2
,mB⟩ (5)

今のmA,mB , j,mは

mA = −1

2
,
1

2
, mB = −1

2
,
1

2
, j = 1, 0 , m = mA +mB , −j ≤ m ≤ j

|jA,mA⟩, |jB ,mB⟩を |±⟩A, |±⟩B として

|1
2
,
1

2
;
1

2
,
1

2
⟩ = |+⟩A ⊗ |+⟩B , |1

2
,−1

2
;
1

2
,−1

2
⟩ = |−⟩A ⊗ |−⟩B

|1
2
,
1

2
;
1

2
,−1

2
⟩ = |+⟩A ⊗ |−⟩B , |1

2
,−1

2
;
1

2
,
1

2
⟩ = |−⟩A ⊗ |+⟩B

と書き、(5)から 2つのスピン 1/2で可能な |(1/2, 1/2)j,m⟩は 4個あり

|1, 1⟩ = |1
2
,
1

2
; 1, 1⟩ , |1, 0⟩ = |1

2
,
1

2
; 1, 0⟩ , |1,−1⟩ = |1

2
,
1

2
; 1,−1⟩ , |0, 0⟩ = |1

2
,
1

2
; 0, 0⟩

と書くことにします。(5)を求めいてくと

|1, 1⟩ = |+⟩A ⊗ |+⟩B , |1, 0⟩ = 1√
2
|−⟩A ⊗ |+⟩B +

1√
2
|+⟩A ⊗ |−⟩B , |1,−1⟩ = |−⟩A ⊗ |−⟩B

|0, 0⟩ = − 1√
2
|−⟩A ⊗ |+⟩B +

1√
2
|+⟩A ⊗ |−⟩B

となります。このとき、上の 3つは合成系のスピン j は 1で、|0, 0⟩は 0です。加えて

J2|(jA, jB)j,m⟩ = ℏ2j(j + 1)|(jA, jB)j,m⟩

から、J2の固有値は上の 3つでは 2ℏ2で、|0, 0⟩では 0です。このため、|0, 0⟩を 1重項、他の 3つを 3重項と呼

びます。J3 の固有値は

J3|(jA, jB)j,m⟩ = ℏm|(jA, jB)j,m⟩

から

|1, 1⟩ : ℏ , |1, 0⟩ : 0 , |1,−1⟩ : −ℏ

|0, 0⟩ : 0

となっています。S3 では ℏ = 1にすればいいです。

　固有状態と固有値が回転後も上で見たように

9



e · S|±; e⟩ = ±1

2
|±; e⟩

となっていること、S2 はスカラーなので回転の影響を受けないことを踏まえれば、任意の方向 eでの A,B の状

態によって合成系の状態は

|1, 1⟩ = |+; e⟩A ⊗ |+; e⟩B , |1, 0⟩ = 1√
2
|−; e⟩A ⊗ |+; e⟩B +

1√
2
|+; e⟩A ⊗ |−; e⟩B , |1,−1⟩ = |−; e⟩A ⊗ |−; e⟩B

|0, 0⟩ = − 1√
2
|−; e⟩A ⊗ |+; e⟩B +

1√
2
|+; e⟩A ⊗ |−; e⟩B

と書けることも分かります (回転不変性)。系 Aと系Bを同じ角度で回転させれば、全体は単純に回転させられる

だけなので、合成系はその回転で状況が変わらないと言うことが出来ます。

　最後に 1重項におけるA,Bのスピンの積の期待値を求めておきます。これはA,Bでのスピン演算子 S(A),S(B)

からて

a · S(A) ⊗ b · S(B)

と与えられます (|(1
2
,
1

2
)j,m⟩に作用する演算子)。期待値では

< a · S(A) ⊗ b · S(B) >= ⟨0, 0|a · S(A) ⊗ b · S(B)|0, 0⟩

となり、スピン相関と呼ばれたりします。相関 (相関係数)は簡単に言えば、系Aと系Bの間に関係があることを

表すものです。a, bは系 A,B でのスピン方向の単位ベクトルです。なので、a方向のスピンと b方向のスピンの

積の期待値を求めるということです。テンソル積の記号があると煩わしいので、ここから省いていきます。テンソ

ル積の規則から求めることも出来ますが、素直に計算します。

　一般化された状況だと面倒なので、系 Aの単位ベクトル aは第三成分方向を向いているとし

a3 · S(A) = S
(A)
3

とします。|0, 0⟩は

|0, 0⟩ = 1√
2

(
− |−; b⟩A|+; b⟩B + |+; b⟩A|−; b⟩B

)
⟨0, 0| = 1√

2

(
− A⟨−; b|B⟨+; b|+ A⟨+; b|B⟨−; b|

)
とします。そうすると

⟨0, 0|0, 0⟩ = 1

2

(
A⟨−; b|−; b⟩A B⟨+; b|+; b⟩B − A⟨−; b|+; b⟩A B⟨+; b|−; b⟩B

− A⟨+; b|−; b⟩A B⟨−; b|+; b⟩B + A⟨+; b|+; b⟩A B⟨−; b|−; b⟩B
)
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今はこれの各項は S
(A)
3 b · S(B) を挟んでいます。なので

⟨0, 0|S(A)
3 b · S(B)|0, 0⟩

は

A⟨−; b|S(A)
3 |−; b⟩A B⟨+; b|b · S(B)|+; b⟩B

A⟨+; b|S(A)
3 |+; b⟩A B⟨−; b|b · S(B)|−; b⟩B

− A⟨−; b|S(A)
3 |+; b⟩A B⟨+; b|b · S(B)|−; b⟩B

− A⟨+; b|S(A)
3 |−; b⟩A B⟨−; b|b · S(B)|+; b⟩B

の和になっています。直交性から

B⟨±; b|b · S(B)|±; b⟩B = ±1

2

B⟨±; b|b · S(B)|∓; b⟩B = ∓1

2
B⟨±; b|∓; b⟩B = 0

となり

A⟨−; b|S(A)
3 |−; b⟩A B⟨+; b|b · S(B)|+; b⟩B =

1

2
A⟨−; b|S(A)

3 |−; b⟩A

A⟨+; b|S(A)
3 |+; b⟩A B⟨−; b|b · S(B)|−; b⟩B = −1

2
A⟨+; b|S(A)

3 |+; b⟩A

よって

⟨0, 0|S3b · S(B)|0, 0⟩ = 1

4

(
− ⟨+; b|S(A)

3 |+; b⟩A + A⟨−; b|S(A)
3 |−; b⟩A

)
(6)

となります。ここからの計算では Aしか出てこないので、(A)を省きます。

　ちなみに、

< a · S(A) >=< b · S(B) >= 0

となっていることも分かります。

　 r = 1の極座標を (θ, φ)として、回転によって

⟨−; b|S3|−; b⟩ = ⟨−|R†
2(−θ)R†

3(−φ)S3R3(−φ)R2(−θ)|−⟩

= ⟨−|R†
2(−θ)R†

3(−φ)S3R3(−φ)R2(−θ)|−⟩

= ⟨−|R†
2(−θ)S3R2(−θ)|−⟩
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とすれば第三成分方向に戻ります。−θ,−φとしているのは |−⟩は第三成分のマイナス方向だからで、二行目から
三行目へは σa 同士は交換するからです。|+⟩では

⟨+; b|S3|+; b⟩ = ⟨+|R†
2(θ)R

†
3(φ)S3R3(φ)R2(θ)|+⟩ = ⟨+|R†

2(θ)S3R2(θ)|+⟩

となります。

　挟んでいる部分は

R2(−θ) = exp[
i

2
θσ2] = cos

θ

2
+ iσ2 sin

θ

2
= (cosα+ iσ2 sinα) (α = θ/2)

R†
2(−θ) = (cosα− iσ2 sinα) (σ†

2 = σ2)

から

R†
2(−θ)σ3R2(−θ) = (cosα− iσ2 sinα)σ3(cosα+ iσ2 sinα)

見やすくなるので、行列を直接計算せずにパウリ行列の関係 (3)を使って、σ3 を右側に持っていきます。そうす

ると

R†
2(−θ)σ3R2(−θ) = (cosα− iσ2 sinα)(σ3 cosα+ i([σ3, σ2] + σ2σ3) sinα)

= (cosα− iσ2 sinα)(σ3 cosα+ i(−2iσ1 + σ2σ3) sinα))

= (cosα− iσ2 sinα)(σ3 cosα+ 2σ1 sinα+ iσ2σ3 sinα))

= (cosα− iσ2 sinα)(σ3 cosα+ iσ2σ3 sinα+ 2σ1 sinα)

= (cos2 α+ σ2
2 sin

2 α)σ3 + 2(cosα− iσ2 sinα)σ1 sinα

= (cos2 α+ sin2 α)σ3 + 2 sinα(cosα− iσ2 sinα)σ1

これを |−⟩で挟んで (4)を使うことで
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⟨−|R†
2(−θ)σ3R2(−θ)|−⟩ = ⟨−|

[
(cos2 α+ sin2 α)σ3 + 2 sinα(cosα− iσ2 sinα)σ1

]
|−⟩

= ⟨−|
[
(cos2 α+ sin2 α)σ3|−⟩+ 2 sinα(cosα− iσ2 sinα)σ1|−⟩

]
= ⟨−|

[
− (cos2 α+ sin2 α)|−⟩+ 2 sinα(cosα− iσ2 sinα)|+⟩

]
= ⟨−|

[
− (cos2 α+ sin2 α)|−⟩+ 2 sinα(cosα|+⟩ − iσ2|+⟩ sinα)

]
= ⟨−|

[
− (cos2 α+ sin2 α)|−⟩+ 2 sinα

(
cosα|+⟩+ sinα|−⟩

)]
= −

(
cos2 α+ sin2 α)⟨−|−⟩+ 2 sinα(cosα⟨−|+⟩+ sinα⟨−|−⟩

)
= − (cos2 α+ sin2 α) + 2 sin2 α

= sin2 α− cos2 α

= − cos 2α

= − cos θ

|+⟩では αの符号を反転させればいいだけなので、同様にしていくことで

⟨+|R†
2(−θ)σ3R2(−θ)|+⟩ = ⟨+|

[
(cos2 α+ sin2 α)σ3|+⟩ − 2 sinα(cosα+ iσ2 sinα)σ1

]
|+⟩

= ⟨+|
[
(cos2 α+ sin2 α)|+⟩ − 2 sinα(cosα+ iσ2 sinα)

]
|−⟩

= ⟨+|
[
(cos2 α+ sin2 α)|+⟩ − 2 sinα(cosα|−⟩+ iσ2|−⟩ sinα)

]
= (cos2 α+ sin2 α)⟨+|+⟩ − 2 sin2 α⟨+|+⟩

= cos2 α+ sin2 α− 2 sin2 α

= cos θ

となるので

⟨+; b|S3|+; b⟩ = ⟨+|R†
2(−θ)S3R2(−θ)|+⟩ = 1

2
cos θ

⟨−; b|S3|−; b⟩ = ⟨−|R†
2(−θ)S3R2(−θ)|−⟩ = −1

2
cos θ

よって、期待値 (6)は

< S
(A)
3 b · S(B) >= ⟨0, 0|S3b · S(B)|0, 0⟩ = 1

2
(−1

2
A⟨+; b|S3|+; b⟩A +

1

2
A⟨−; b|S3|−; b⟩A)

=
1

2
(−1

4
cos θ − 1

4
cos θ)

= − 1

4
cos θ
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期待値は系 Aと系 B のスピン方向の間の角度に依存していて、e3 を第三成分方向の単位ベクトルとすれば

< S
(A)
3 b · S(B) >= −1

4
e3 · b

これは系 Aが第三成分を向いているときだけでなく、一般的な方向でも成立していて

⟨a · S(A)b · S(B)⟩ = −1

4
a · b

と書けます。

　ついでに、古典的な取り扱いをしたときどうなるのかも見ておきます。スピンは古典的な対応物がないので、角

運動量 0の粒子が角運動量A,Bを持った 2つの粒子A.Bに分離したとすることで同じような状況を作ります。こ

れは当然A = −Bです。運動量を観測するときは観測する方向があるので、それを単位ベクトル a, bで表します。

そうすると、観測されるときは a ·A, b ·Bとして出てきます。これの符号を観測するとして、その観測量 a, bを

a ·A : a = ±1 , b ·B : b = ±1

とします。このとき、a, bが ±1となる確率は a, bとは無関係で、全て等しいとします。よって、abの期待値は

< ab >= P++ + P−− − P+− − P−+

で与えられます。Pabは a, b = ±1の組み合わせのそれぞれの確率です (A,Bそのものでなく、観測する方向の符

号も絡んでいるので、a = +1, b = +1のような場合もある)。このようなときの確率は円を考えると分かります

(正確には 3次元なので球ですが円でも同じ)。

　まず、円に a, bの間の角度を θとして配置して、図のように点線をいれます。それぞれの点線は a, bに垂直で

す。このとき Aが、aに垂直な点線で分けられている半円の aの側にいるなら、その間の角度は π/2を超える

ことはないので、a · A > 0から a = +1です。点線の逆側にいるなら a = −1です。bでも同様です。そして、

A = −Bから、例えば図の領域 (iii)にAがいるなら、Bは領域 (i)にいることになり、a = −1, b = +1となるの

で、ab = −1になります。

　よって、2つの点線で 4分割された領域のどこにAがいるかで abの符号が決まり
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(i) : ab = −1, π − θ

(ii) : ab = +1, θ

(iii) : ab = −1, π − θ

(iv) : ab = +1, θ

θ, π − θはそれぞれの領域の角度です。そうすると、A,B が各領域に入る確率は等しいとしているので、2πで割

ればそれぞれの領域にいる確率になり

P++ = P−− =
θ

2π
, P+− = P−+ =

π − θ

2π

よって

< ab >=
θ

π
− π − θ

π
=

−π + 2θ

π

となります。これは A,Bの間の角度 θを変数にする−1から+1への 1次関数です（同じ向きの θ = 0で−1、反

対向きの θ = πで +1。）。

　量子力学での結果を同じように観測結果が ±1とするには、S をパウリ行列にすればいいので

⟨a · σ(A)b · σ(B)⟩ = −a · b = − cos θ

絶対値を取って古典的な場合と比較すれば、量子力学での結果の方が大きいです（相関が強い）。これは量子力学

での不確実さによるものだと考えられます。

・補足

　 Rn(θ)を nの極座標で書いたときの形を出します。nを半径 r = 1とした極座標 (ρ, φ)によって

n = (sin ρ cosφ, sin ρ sinφ, cos ρ) (n · n = 1)

と書けば

exp[−iθ′n · σ] = cos θ′ − i(σ1 sin ρ cosφ+ σ2 sin ρ sinφ+ σ3 cos ρ) sin θ
′

第 2項は
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(σ1 sinρ cosφ+ σ2 sin ρ sinφ+ σ3 cos ρ) sin θ
′

= (

(
0 1

1 0

)
sin ρ cosφ+

(
0 −i

i 0

)
sin ρ sinφ+

(
1 0

0 −1

)
cos ρ) sin θ′

=

(
cos ρ sin ρ cosφ− i sin ρ sinφ

sin ρ cosφ+ i sin ρ sinφ − cos ρ

)
sin θ′

=

(
cos ρ e−iφ sin ρ

eiφ sin ρ − cos ρ

)
sin θ′

と書けるので

exp[−iθn · σ] =

(
cos θ − i cos ρ sin θ′ −ie−iφ sin ρ sin θ′

−ieiφ sin ρ sin θ′ cos θ + i cos ρ sin θ′

)

というように極座標を使った形で書けます。
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