
ウィグナー・エッカルトの定理

角運動量演算子の期待値とクレブシュ・ゴルダン係数の関係を与えるウィグナー・エッカルトの定理を求めます。

途中から演算子のハットを省いて、D行列D
(j)
m′m、Ĵ±を作用させたときに出てくる係数 C±

jm、クレブシュ・ゴル

ダン係数 C、球面調和関数 Yl,m を除いて大文字のローマ文字は演算子としています。

　表記をまとめておきます。2つの角運動量演算子 Â, B̂があり、それぞれの z成分の固有状態を |jA,mA⟩, |, jB ,mB⟩
とします。これらと Ĵ = Â+ B̂ の z成分の固有状態 |(jA, jB)j,m⟩は

Âz|jA,mA⟩ = ℏmA|jA,mA⟩ , Â2|jA,mA⟩ = ℏ2jA(jA + 1)|jA,mA⟩ (−jA ≤ mA ≤ jA)

B̂z|jB ,mB⟩ = ℏmB |jB ,mB⟩ , B̂2|jB ,mB⟩ = ℏ2jB(jB + 1)|jB ,mB⟩ (−jB ≤ mB ≤ jB)

Ĵz|(jA, jB)j,m⟩ = ℏm|(jA, jB)j,m⟩ , Ĵ2|(jA, jB)j,m⟩ = ℏ2j(j + 1)|(jA, jB)j,m⟩

j,mの範囲は

|jA − jB | ≤ j ≤ jA + jB , −j ≤ m ≤ j

となっています。jA, jB は０以上の整数か半整数です。|jA,mA⟩, |jB ,mB⟩のテンソル積から

|jA,mA; jB ,mB⟩ = |jA,mA⟩ ⊗ |jB ,mB⟩

として作った基底で |(jA, jB); j,m⟩を展開すると

|(jA, jB)j,m⟩ =
jA∑

mA=−jA

jB∑
mB=−jB

⟨jA,mA; jB ,mB |(jA, jB)j,m⟩|jA,mA; jB ,mB⟩

=

jA∑
mA=−jA

jB∑
mB=−jB

C(jA, jB , j : mA,mB ,m)|jA,mA; jB ,mB⟩

係数 C はクレブシュ・ゴルダン係数で、実数です。クレブシュ・ゴルダン係数はm = mA +mB のときに 0でな

い値を持ちます。クレブシュ・ゴルダン係数の漸化式は「クレブシュ・ゴルダン係数の符号」で求めているように

√
j(j + 1)−m(m± 1)⟨jA,mA; jB ,mB |(jA, jB)j,m± 1⟩

=
√
jA(jA + 1)−mA(mA ∓ 1)⟨jA,mA ∓ 1; jB ,mB |(jA, jB)j,m⟩

+
√
jB(jB + 1)−mB(mB ∓ 1)⟨jA,mA; jB ,mB ∓ 1|(jA, jB)j,m⟩ (1)

これを後で使います。

　ここでは基底として spherical basisを使うので、関係を出しておきます。l = 1, m = 1, 0,−1での球面調和関

数 Yl,m は
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Y1,1(θ, ϕ) = −
√

3

8π
eiϕ sin θ , Y1,0(θ, ϕ) =

√
3

4π
cos θ , Y1,−1(θ, ϕ) =

√
3

8π
e−iϕ sin θ

これらと極座標 (r, θ, ϕ)での

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ

を見比べると

x =

√
2π

3
r(Y1,−1(θ, ϕ)− Y1,1(θ, ϕ))

y = i

√
2π

3
r(Y1,−1(θ, ϕ) + Y1,1(θ, ϕ))

z =

√
4π

3
rY1,0(θ, ϕ)

rY1,1(θ, ϕ) = −
√

3

4π

x+ iy√
2

rY1,0(θ, ϕ) =

√
3

4π
z

rY1,−1(θ, ϕ) =

√
3

4π

x− iy√
2

となっているのが分かります。ベクトルのように書くと

 Y1,1

Y1,0

Y1,−1

 =

√
3

4π

1

r


− 1√

2
(x+ iy)

z
1√
2
(x− iy)

 (2)

これらから、ベクトル rの成分が

 r+1

r0

r−1

 =


− 1√

2
(x+ iy)

z
1√
2
(x− iy)

 (3)

となる基底が作れれば、その rの成分は球面調和関数に対応します。

　 (3)の形から、デカルト座標での基底 ex, ey, ez を使って、新しい基底を

g+1 = −ex + iey√
2

, g0 = ez , g−1 =
ex − iey√

2

と作ります。「D行列の計算」でも出てきたように、この基底が spherical basisです。添え字が +1, 0,−1という

紛らわしい表記になっていることに注意してください。
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　直交していることを示します。この基底は複素ベクトルになっており、複素共役での関係は

g∗
+1 = −g−1 , g

∗
−1 = −g1 , g

∗
0 = g0

複素ベクトル空間なので、内積の左側のベクトルは複素共役を取ると定義します。その内積は<,>と書くことに

し、ユークリッド空間の内積は「·」のままにします。内積は

< g+1, g+1 >=
ex − iey√

2

ex + iey√
2

=
1

2
(ex · ex + ey · ey) = 1

< g−1, g−1 >=
ex + iey√

2

ex − iey√
2

=
1

2
(ex · ex − ey · ey) = 1

< g0, g0 >= ez · ez = 1

< g+1, g−1 >= −ex − iey√
2

ex − iey√
2

=
1

2
(ex · ex − ey · ey) = 0

< g+1, g0 >= − (ex − iey) · ez√
2

= 0

添え字の q, q′ を ±1, 0として直交性は

⟨gq, gq′⟩ = δqq′

と書けます。

　ベクトル成分は

v = vxex + vyey + vzez =
1

2
(vx − ivy)(ex + iey) +

1

2
(vx + ivy)(ex − iey) + vzez

=
vx + ivy√

2
g−1 −

vx − ivy√
2

g+1 + vzg0

= − v+1g−1 − v−1g+1 + v0g0

= v+1g
∗
+1 + v−1g

∗
−1 + v0g

∗
0

と定義されます。位置ベクトル r = xex + yey + zez では

r+1 = −x+ iy√
2

=

√
4π

3
rY1,1(θ, ϕ) , r0 = z =

√
4π

3
rY1,0(θ, ϕ) , r−1 =

x− iy√
2

=

√
4π

3
rY1,−1(θ, ϕ) (4)

となり、(3)に対応し、成分の 0,±1は球面調和関数 Yl,mでのmに対応しています (角運動量演算子の固有値 ℏm
に対応)。これは後で出てくるテンソル演算子の話で重要になります。

　次に、ベクトル演算子を定義します。Û を回転演算子として、3成分を持つ演算子 V̂i (i = 1, 2, 3)を回転した状

態 |ψ′⟩で挟むと

⟨ψ′|V̂i|ψ′⟩ = ⟨ψ|Û†V̂iÛ |ψ⟩ (|ψ′⟩ = Û |ψ⟩)
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これが 3次元回転行列 Rij によって

⟨ψ′|V̂i|ψ′⟩ =
3∑

j=1

Rij⟨ψ|V̂j |ψ⟩

となっているとき、V̂i をベクトル演算子と言います。もっと分かりやすい形にすると

Û†V̂iÛ =

3∑
j=1

Rij V̂j (5)

となっていることで、右辺はベクトルの回転の形そのものです。また、スカラーは回転変換で変化しないことから

Û†ŜÛ = Ŝ

となる演算子をスカラー演算子と言います。

　ベクトル演算子と角運動量演算子の交換関係を求めます。Û を単位ベクトル nによる回転軸での回転演算子と

し、微小角度∆θなら、(5)の左辺は

Û†V̂iÛ = (1 +
i

ℏ
∆θn · Ĵ)V̂i(1−

i

ℏ
∆θn · Ĵ) = V̂i −

i

ℏ
∆θV̂in · Ĵ +

i

ℏ
∆θn · Ĵ V̂i = V̂i −

i

ℏ
∆θ[V̂i,n · Ĵ ]

右辺は通常のベクトルの微小な回転と同じで

3∑
j=1

Rij V̂j == V̂i +∆θ

3∑
j=1

3∑
k=1

ϵikjnkV̂j (v′ = v +∆θ(n× v))

なので

[V̂i,n · Ĵ ] = iℏ(n× V̂ )i

3∑
k=1

nk[V̂i, Ĵk] = iℏ
3∑

k=1

nk

3∑
j=1

ϵikj V̂j

[V̂i, Ĵk] = iℏ
3∑

j=1

ϵikj V̂j (6)

成分をバラして書けば

[V̂1, Ĵ1] = [V̂2, Ĵ2] = [V̂3, Ĵ3] = 0

[V̂1, Ĵ2] = iℏV̂3 , [V̂1, Ĵ3] = −iℏV̂2

[V̂2, Ĵ1] = −iℏV̂3 , [V̂2, Ĵ3] = iℏV̂1

[V̂3, Ĵ1] = iℏV̂2 , [V̂3, Ĵ2] = −iℏV̂1
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(6)から分かるように、V̂i を角運動量演算子にすれば

[Ĵi, Ĵj ] = iϵijkĴk

となり、角運動量演算子の交換関係になります。なので、角運動量演算子はベクトル演算子です。

　演算子にハットをつけるのが面倒だったので、ここから演算子のハットを省いて、D行列D
(j)
m′m、J±を作用さ

せたときに出てくる係数 C±
jm、クレブシュ・ゴルダン係数 C、球面調和関数 Yl,mを除いて大文字のローマ文字は

演算子とします。

　角運動量演算子の z 成分の固有状態 |j,m⟩で spherical basisでのベクトル演算子を挟んだときどうなるのかを

見ます。まず、角運動量演算子との交換関係を求めます。デカルト座標での成分と spherical basisでの成分の対応

は (4)なので、spherical basisでのベクトル演算子 Tq (q = +1, 0,−1)の成分は

T+1 = −Vx + iVy√
2

, T0 = Vz , T−1 =
Vx − iVy√

2

このときの角運動量演算子との交換関係は

[Jz, Vx ± iVy] = [Jz, Vx]± i[Jz, Vy] = iℏVy ± i(−iℏVx) = iℏVy ± ℏVx

[Jz, Vz] = 0

から

[Jz, T±1] = ∓ 1√
2
[Jz, Vx ± iVy] = ∓ ℏ√

2
(Vx ± iVy) = ±ℏT±1

[Jz, T0] = 0

これらはまとめて

[Jz, Tq] = ℏqTq (q = 0,±1) (7)

と書けます。

　後で使うので、J± = Jx ± iJy との交換関係も求めます。J+ とは

[J+, Vx + iVy] = [Jx + iJy, Vx + iVy] = [Jx, Vx] + [Jx, iVy] + [iJy, Vx] + [iJy, iVy]

= [Jx, Vx] + i[Jx, Vy] + i[Jy, Vx]− [Jy, Vy]

= i[Jx, Vy] + i[Jy, Vx]

= − ℏVz + ℏVz

= 0

他も同様にして
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[J+, Vx − iVy] = [Jx, Vx]− i[Jx, Vy] + i[Jy, Vx] + [Jy, Vy] = −i[Jx, Vy] + i[Jy, Vx] = 2ℏVz

[J−, Vx + iVy] = [Jx, Vx] + i[Jx, Vy]− i[Jy, Vx] + [Jy, Vy] = i[Jx, Vy]− i[Jy, Vx] = −2ℏVz

[J−, Vx − iVy] = [Jx, Vx]− i[Jx, Vy]− i[Jy, Vx]− [Jy, Vy] = −i[Jx, Vy]− i[Jy, Vx] = 0

となるので

[J+, T+1] = [J−, T−1] = 0

[J+, T−1] =
√
2ℏT0 , [J−, T+1] = −

√
2ℏT0

これらはまとめて

[J±, Tq] = ℏ
√

2− q(q ± 1)Tq±1 (8)

と書かれます。

　ベクトル演算子を spherical basisにしたときに重要なのは、j = 1での |j,m⟩のm = 0,±1と q = 0,±1が対応

しているために

⟨j, q′|Jz|j, q⟩ = ℏqδq′q

⟨j, q′|J±|j, q⟩ = ℏ
√
j(j + 1)− q(q ± 1)δq′,q±1 = ℏ

√
2− q(q ± 1)δq′,q±1

と書けることです。これらを使うと交換関係 (7),(8)は

[Jz, Tq] = ℏqTq =
∑

q′=±1,0

Tq′⟨j, q′|Jz|j, q⟩ (9)

[J±, Tq] = ℏ
√
2− q(q ± 1)Tq±1 =

∑
q′=±1,0

Tq′⟨j, q′|J±|j, q⟩ (10)

また、Jx, Jy は

[Jx, Tq] + i[Jy, Tq] =
∑

q′=±1,0

Tq′⟨j, q′|Jx|j, q⟩+ i
∑

q′=±1,0

Tq′⟨j, q′|Jy|j, q⟩

から

Jx =
∑

q′=±1,0

Tq′⟨j, q′|Jx|j, q⟩ , Jy =
∑

q′=±1,0

Tq′⟨j, q′|Jy|j, q⟩

となっています。これらを使うと、Tq の変換がオイラー角による回転演算子 U(α, β, γ)とD行列によって
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U†(α, β, γ)TqU(α, β, γ) =
∑

q′=±1,0

Tq′(Dqq′(α, β, γ))
∗ (11)

となるのが分かります。これは下の補足で求めています。

　交換関係 [Jz, Tq]を |j,m⟩で挟むと

⟨j′,m′|[Jz, Tq]|j,m⟩ = ⟨j′,m′|(JzTq − TqJz)|j,m⟩ = ℏ⟨j′,m′|(m′Tq − Tqm)|j,m⟩ = ℏ(m′ −m)⟨j′,m′|Tq|j,m⟩

一方で、交換関係は (9)なので

⟨j′,m′|[Jz, Tq]|j,m⟩ = ℏq⟨j′,m′|ℏqTq|j,m⟩

(m′ −m)⟨j′,m′|Tq|j,m⟩ = q⟨j′,m′|Tq|j,m⟩ (12)

このため、m′ −m ̸= qであるなら ⟨j′,m′|Tq|j,m⟩ = 0です。

　今度は J± との交換関係を見ると

⟨j′,m′|[J±, Tq]|j,m⟩ = ⟨j′,m′|(J±Tq − TqJ±)]|j,m⟩

J± はエルミート演算子ではなく J†
± = (Jx ± iJy)

† = Jx ∓ iJy = J∓ なので

J±|j,m⟩ = ℏ
√
j(j + 1)−m(m± 1)|j,m± 1⟩ = ℏC±

jm|j,m± 1⟩

から

⟨j′,m′|J± = (J†
±|j′,m′⟩)† = (J∓|j′,m′⟩)† = ℏC∓

j′m′⟨j′,m′ ∓ 1|

表記の注意ですが、今は ℏを分離した係数を C±
jm としています。これから

⟨j′,m′|[J±, Tq]|j,m⟩ = ℏC∓
j′m′⟨j′,m′ ∓ 1|Tq|j,m⟩ − ℏC±

jm⟨j′,m′|Tq|j,m± 1⟩

そうすると、(10)から

⟨j′,m′|[J±, Tq]|j,m⟩ = ℏ
√

2− q(q ± 1)⟨j′,m′|Tq±1|j,m⟩

なので

√
j′(j′ + 1)−m′(m′ ∓ 1)⟨j′,m′ ∓ 1|Tq|j,m⟩

=
√
j(j + 1)−m(m± 1)⟨j′,m′|Tq|j,m± 1⟩+

√
2− q(q ± 1)⟨j′,m′|Tq±1|j,m⟩ (13)
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として、Tq を |j,m⟩で挟んだときの関係式が求まります。この結果をクレブシュ・ゴルダン係数の関係と見比べ
ます。

　まず、クレブシュ・ゴルダン係数はm = mA +mB のときに 0でないです。これは (12)でのm′ = m+ qのと

きに ⟨j′,m′|Tq|j,m⟩ ̸= 0となることと対応しています。そして、(13)は漸化式のような形になっています。なの

で、見やすくするために (1)での |j,m⟩が左側になるように複素共役を取って ±を (13)と合うように揃えると

√
j(j + 1)−m(m∓ 1)⟨(jA, jB)j,m∓ 1|jA,mA; jB ,mB⟩

=
√
jA(jA + 1)−mA(mA ± 1)⟨(jA, jB)j,m|jA,mA ± 1; jB ,mB⟩

+
√
jB(jB + 1)−mB(mB ± 1)⟨(jA, jB)j,m|jA,mA; jB ,mB ± 1⟩

j を j′、jA を j、jB を 1、mをm′、mA をm、mB を qとすると

√
j′(j′ + 1)−m′(m′ ∓ 1)⟨(j, 1); j′,m′ ∓ 1|j,m; 1, q⟩

=
√
j(j + 1)−m(m± 1)⟨(j, 1); j′,m′|j,m± 1; 1, q⟩

+
√
2− q(q ± 1)⟨(j, 1); j′,m′|j,m; 1, q ± 1⟩

これは (13)と係数が一致しており、それぞれの項で

⟨j′,m′ ∓ 1|Tq|j,m⟩ ⇔ ⟨(j, 1)j′,m′ ∓ 1|j,m; 1, q⟩ = C(j, 1, j′ : m, q,m′ ∓ 1)

⟨j′,m′|Tq|j,m± 1⟩ ⇔ ⟨(j, 1)j′,m′|j,m± 1; 1, q⟩ = C(j, 1, j′ : m± 1, q,m′)

⟨j′,m′|Tq±1|j,m⟩ ⇔ ⟨(j, 1)j′,m′|j,m; 1, q ± 1⟩ = C(j, 1, j′ : m, q ± 1,m′)

と対応しています。簡易的な式にすれば、c1, c2, c3 を定数として

c1t1 + c2t2 + c3t3 = 0 , c1t
′
1 + c2t

′
2 + c3t

′
3 = 0

という 2 つの式が求まったということで、このときの ti と t′i は定数倍しか異なりません。今の場合は m によ

る漸化式なので、その定数は m に依存できなく、j, j′ にのみ依存します。そして、クレブシュ・ゴルドン係数

C(j, 1, j′ : m, q,m′)の漸化式の形に合っているので、⟨j′,m′|Tq|j,m⟩は C(j, 1, j′ : m, q,m′)に比例するのが分か

ります。

　このように、spherical basisのベクトル演算子 Tq による ⟨j′,m′|Tq|j,m⟩がクレブシュ・ゴルダン係数に比例す
ることをウィグナー・エッカルト (Wigner-Eckart)の定理と言います。式にすると

⟨j′,m′|Tq|j,m⟩ = ⟨j,m; 1, q|(j, 1); j′,m′⟩⟨j′||T ||j⟩ (C(j, 1, j′,m, q,m′) = ⟨j,m; 1, q|(j, 1)j′,m′⟩)

という書かれ方がされます (1/
√
2j + 1等の係数を加えたりしている場合もある)。j, j′ に依存する定数 ⟨j′||T ||j⟩

を reduced matrix elementと言い、reducedは左辺が元々の行列成分だからです。reduced matrix elementをブ

ラケットにおいて ||T ||と書いているのは左辺との区別をつけやすくするためのようですが、ノルムのように見え
たり誤植のようにも見えたりするので紛らわしいです。
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　この定理から左辺が0にならない j′,m′に制限があることが分かります。右辺が0にならないためには、|(j, 1); j′,m′⟩
から j′ は |j − 1| ≤ j′ ≤ j + 1、クレブシュ・ゴルダン係数の 0でない条件m = mA +mB からm′ = m+ qでな

ければいけないです。

　ウィグナー・エッカルトの定理から射影定理 (projection theorem)を求めます。ウィグナー・エッカルトの定理

を spherical basisでの角運動量演算子 Jq に使えば

⟨j′,m′|Jq|j,m⟩ = ⟨j,m; 1, q|(j, 1); j′,m′⟩⟨j′||J ||j⟩

右辺の係数は適当なベクトル演算子 Tq と同じなので

⟨j′,m′|Tq|j,m⟩
⟨j′,m′|Jq|j,m⟩

=
⟨j′||T ||j⟩
⟨j′||J ||j⟩

(14)

と書けます。

　次に、spherical basisでの角運動量演算子 Jq と Tq の内積を見ます。J±1 (上昇、下降演算子でなく spherical

basisでの成分)は

J±1 = ∓ 1√
2
(Jx ± iJy)

内積は成分の複素共役を取ったものと行うので

< J ,T >= J∗
0T0 + J∗

+1T+1 + J∗
−1T−1 = J0T0 − J−1T+1 − J+1T−1

内積を <,>で書くとブラケットと紛らわしいので J · T と表記してしまいます。J±1 の |j,m⟩への作用は

J+1|j,m⟩ = − 1√
2
J+|j,m⟩ = − ℏ√

2

√
j(j + 1)−m(m+ 1)|j,m+ 1⟩

J−1|j,m⟩ = 1√
2
J−|j,m⟩ = ℏ√

2

√
j(j + 1)−m(m− 1)|j,m− 1⟩

エルミート共役から

⟨j,m|J+1 = (−J−1|j,m⟩)† = − ℏ√
2

√
j(j + 1)−m(m− 1)⟨j,m− 1| = − ℏ√

2
C−

jm⟨j,m− 1|

⟨j,m|J−1 = (−J+1|j,m⟩)† = ℏ√
2

√
j(j + 1)−m(m+ 1)⟨j,m+ 1| = ℏ√

2
C+

jm⟨j,m+ 1|

なので

⟨j,m|J · T |j,m⟩ = ⟨j,m|J0T0|j,m⟩ − ⟨j,m|J−1T+1|j,m⟩ − ⟨j,m|J+1T−1|j,m⟩

= ℏm⟨j,m|T0|j,m⟩ − ℏ√
2
C+

jm⟨j,m+ 1|T+1|j,m⟩+ ℏ√
2
C−

jm⟨j,m− 1|T−1|j,m⟩
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一方で、ウィグナー・エッカルトの定理から

⟨j,m|T0|j,m⟩ = ⟨j,m; 1, 0|(j, 1); j,m⟩⟨j||T ||j⟩ = C(j, 1, j,m, 0,m)⟨j||T ||j⟩

⟨j,m|T+1|j,m⟩ = ⟨j,m; 1, 1|(j, 1); j,m⟩⟨j||T ||j⟩ = C(j, 1, j,m, 1,m)⟨j||T ||j⟩

⟨j,m|T−1|j,m⟩ = ⟨j,m; 1,−1|(j, 1); j,m⟩⟨j||T ||j⟩ = C(j, 1, j,m,−1,m)⟨j||T ||j⟩

なので

⟨j,m|J · T |j,m⟩ = ℏm⟨j,m|T0|j,m⟩ − ℏ√
2
C+

jm⟨j,m+ 1|T+1|j,m⟩+ ℏ√
2
C−

jm⟨j,m− 1|T−1|j,m⟩

= (ℏmC(j, 1, j,m, 0,m)− ℏ√
2
C(j, 1, j,m, 1,m) +

ℏ√
2
C(j, 1, j,m,−1,m))⟨j||T ||j⟩

T = J なら

⟨j,m|J · J |j,m⟩ = (ℏmC(j, 1, j,m, 0,m)− ℏ√
2
C(j, 1, j,m, 1,m) +

ℏ√
2
C(j, 1, j,m,−1,m))⟨j||J ||j⟩

これらも右辺の係数は同じなので

⟨j,m|J · T |j,m⟩
⟨j,m|J2|j,m⟩

=
⟨j||T ||j⟩
⟨j||J ||j⟩

これは (14)から

⟨j,m|J · T |j,m⟩
⟨j,m|J2|j,m⟩

=
⟨j′,m′|Tq|j,m⟩
⟨j′,m′|Jq|j,m⟩

そして、ノルムは基底に依存しないので

J2|j,m⟩ = ℏ2j(j + 1)|j,m⟩

となり

⟨j′,m′|Tq|j,m⟩ = ⟨j,m|J · T |j,m⟩
ℏ2j(j + 1)

⟨j′,m′|Jq|j,m⟩

この式を射影定理と呼びます。大雑把に言えば、右辺のベクトル部分が

J · T
|J |2

J = (T · J

|J |
)
J

|J |

として、T の J 方向への射影になっているからです。
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　最後に、テンソル演算子でのウィグナー・エッカルトの定理の話をします。ただし、数学的な部分は無視して雰

囲気で見ていきます。

　 2階テンソルとします。2階テンソルは雑に言えば、その成分が 2つの添え字で tij として書けて、それぞれの

添え字に対して変換の行列が作用する量です。これをそのままベクトル演算子の定義に適用すると、演算子 T̂ij が

回転行列によって

Û†T̂ijÛ =

3∑
k=1

3∑
l=1

RikRjlT̂kl

と書けるなら、T̂ij は 2階テンソル演算子と呼ばれます。回転行列 Rij との区別をはっきりさせるために演算子に

ハットをつけています。注意ですが、ここでは 3次元ユークリッド空間でのテンソルに限定しています。テンソル

の成分は 2つのベクトル成分 Vi,Wi の積の形で与えられるので、テンソル演算子でも

T̂ij = V̂iŴj (15)

と書けます。しかし、(15)での 2階テンソルはここでしてきた話と対応していません。このことを雑に見ていき

ます。

　一旦、ベクトルに話を戻します。球面調和関数は Jz の固有状態で、l = 1では Y1,m が対応し、これはmによ

る 3成分を持ちます。そして、spherical basisでの 3次元ベクトル rは Y1,mが成分です。つまり、spherical basis

における 3次元ベクトルの成分は Y1,m や |1,m⟩と同じように変換されると言えます。
　これを素直に拡張すると、spherical basisでの 5次元ベクトルの成分は Y2,m, |2,m⟩と同じように変換されると
言えます。さらにそのまま一般化すると、spherical basisでの 2l + 1次元ベクトルの成分は Yl,m, |l,m⟩と同じ変
換をするとなります。

　この話を 2階テンソルに結びつけます (演算子にしても同じ話)。まず、2階テンソル Tij は

Tij =
1

2
(Tij + Tji) +

1

2
(Tij − Tji) = Sij +Aij (16)

として、添え字の入れ替えに対して対称な部分と反対称な部分に分けられます。2階テンソルは 3 × 3 = 9個の

成分を持っていて、Sij , Aij を対称行列、反対称行列と思えば、Sij の独立成分は 6個、Aij の独立成分は 3個で

6 + 3 = 9となって一致します。独立成分はその成分が分かれば残りの成分も分かる成分の数のことです。対称行

列では、対角成分の 3個と非対角成分の半分が分かれば残りが分かるので、6個です。反対称行列では対角成分は

0にしかなれないので、非対角成分の半分である 3個が分かれば行列成分は全て分かります。

　 Tij = ViWj になっているとして、Aij を見ると

T12 − T21 = V1W2 − V2W1 = (V ×W )3 , T13 − T31 = −(V ×W )2 , T23 − T32 = (V ×W )1

となり、ベクトル積になっているのが分かります。なので、Aij は回転変換に対してベクトルとして振る舞います

(ベクトル積はベクトル)。ベクトル積が出てきたので、内積も出てくるように (16)を変形して

Tij =
1

2
(ViWj + VjWi)−

1

3
δijV ·W +

1

2
(ViWj − VjWi) +

1

3
δijV ·W

内積は回転変換に対して不変なのでスカラーです。1/3をつけているのは、Sij は
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3∑
i=1

Sii =
1

2

3∑
i=1

(ViWi + ViWi) = V ·W

となっているので、行列計算と見たときトレースが

tr[S − 1

3
(V ·W )I] =

3∑
i=1

(
1

2
(ViWi +WiVi)− δii

1

3
V ·W ]) = V ·W − V ·W = 0

となるようにするためです。I は単位行列です。このため

S′
ij =

1

2
(ViWj + VjWi)−

1

3
δijV ·W

とすれば、S′
ij はトレースが 0の 3× 3対称行列です。トレースが 0のために対角成分のうちの 2個が分かれば残

りの 1個も決まるので、この部分の独立成分は 5個です。減った 1個は残っているスカラーが持ちます。

　というわけで、2階テンソルは

Tij = S′
ij +Aij + Pij

と書けます。S′
ij はトレースが 0の 3× 3対称行列、Aij は 3× 3反対称行列、Pij はスカラーで、それぞれの独立

成分は 5個、3個、1個です。このように 2階テンソルの 9成分は 5+3+1に分解されます。そうすると、3× 3行

列に見える Tij は S′
ij の 5個、Aij の 3個、Pij の１個から構成される 9次元ベクトルと考えることもできます。そ

して、このときの Aij はベクトル、Pij はスカラーとして変換されます。言い換えれば、9次元ベクトル空間にお

いて、S′
ij の独立成分は 5次元ベクトル空間、Aij は 3次元ベクトル空間、Pij は 1次元ベクトル空間として、そ

れぞれ個別に変換を受けるということです。この結果と spherical basisでの話を合わせます。

　回転変換に対して、スカラーの Pij は 1次元ベクトル |0, 0⟩、ベクトルの Aij は 3次元ベクトル |1,m⟩が対応す
るように見えます。そうすると、独立成分が 5個の S′

ij は 5次元ベクトル |2,m⟩が対応すると考えられます。こ
の 5次元ベクトル部分を 2階球面テンソル (spherical tensor of rank 2)と言います。なので、ベクトル成分の言

い方と同じように、2階球面テンソルは spherical basisでの 2階テンソルの成分とも言えます。

　これはそのまま一般化され、2k+ 1個 (k = 0, 1, 2, . . .)の成分を持ち、|k,m⟩と同じ変換をするとき、k階球面
テンソル T

(k)
q (q = 0,±1, . . . ,±k)となります。k = 1での T

(1)
q が spherical basisでのベクトル成分です。これを

演算子としたのが k階球面テンソル演算子です。

　この話で重要なのは 9次元ベクトルが 5,3,1次元ベクトルに分解され、それぞれが個別に変換を受けるという点で

す。もとの 2階テンソルTijの 9成分は一般的には 9成分が混じるように変換されます (変換はT ′
ij = ΣΣRiaRjbTab)。

簡単に言えば、9次元ベクトルを 9× 9行列で変換すれば、各成分は混ざるということです。しかし、ベクトルの

成分は基底に依存し、成分を変換する行列も基底によって変わります。このため、相似変換によって 9成分が混

ざらないような 9× 9行列が作れる可能性があり、今は 5× 5行列、3× 3行列、1× 1行列のブロック行列を対角

的に持つ行列と 5,3,1次元ベクトル a(5), b(3), c(1) によって

 (5× 5) 0 0

0 (3× 3) 0

0 0 (1× 1)


 a(5)

b(3)

c(1)


という形の変換に書き換えられたということです ((k × k)は k × k行列)。これを群論では 9 = 5 ⊕ 3⊕ 1と表記

し、既約表現に分解したことに対応します。⊕は行列の直和の意味で見ればわかりやすいです。
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　ちなみに、例えば T
(2)
q は |2,m⟩に対応し、これは Y2,m に対応します。なので、極座標での位置に対して

r2Y2,2(θ, ϕ) =
1

2

√
15

8π
r2 sin2 θe2iϕ =

√
15

32π
r2 sin2(cos 2ϕ+ i sin 2ϕ)

=

√
15

32π
((r sin θ cosϕ)2 − (r sin θ sinϕ) + i2r2 sin2 θ sinϕ cosϕ)

=

√
15

32π
(x2 − y2 + 2ixy)

=
1

2

√
15

8π
(−x− iy)2

他も同様に変形すると

r2Y2,±2(θ, ϕ) =
1

2

√
15

8π
r2 sin2 θe±2iϕ =

√
15

8π

1

2
(∓x− iy)2

r2Y2,±1(θ, ϕ) = ∓
√

15

8π
r2 sin θ cos θe±iϕ =

√
15

8π
(∓x− iy)z

r2Y2,0(θ, ϕ) =

√
5

16π
(3 cos2 θ − 1) =

√
15

8π

√
1

6
(2z2 − x2 − y2)

これらを成分 q = 0,±1,±2に当てはめることで位置の成分に対応する 2階球面テンソル T
(2)
q になります。

　ここから演算子の表記を上で設定した場合に戻します。

　ウィグナー・エッカルトの定理は spherical basisでのベクトル演算子 Tq で書かれており、それは 1階球面テン

ソル演算子 T
(1)
q なので、ウィグナー・エッカルトの定理はそのまま T

(k)
q に拡張できます。

　 k階球面テンソル演算子は Yk,m と同じ変換をするとしているので、D行列による変換

Yk,m(θ′, ϕ′) =
∑
m′

(D
(k)
mm′(α, β, γ))

∗Yk,m′(θ, ϕ)

と、1階球面テンソルであるベクトル演算子の変換 (11)から、T (k)
q は

U†(α, β, γ)T (k)
q U(α, β, γ) =

∑
q′

(D
(k)
qq′ (α, β, γ))

∗T
(k)
q′

と変換されます。このため、交換関係も (7),(8)と同じように

[Jz, T
(k)
q ] = ℏqT (k)

q

[J±, T
(k)
q ] = ℏ

√
k(k + 1)− q(q ± 1)T

(k)
q±1 (q = 0,±1,±2, . . .)

となり、後は同じことをするだけです。よって、球面テンソル演算子によるウィグナー・エッカルトの定理は

⟨j′,m′|T (k)
q |j,m⟩ = ⟨j,m; k, q|(j, k); j′,m′⟩⟨j′||T (k)||j⟩

13



大きな違いは ⟨j′||T (k)||j⟩に kの依存性が加わることです。

・補足

　 (11)を求めます。D行列はオイラー角による回転演算子 U(α, β, γ)から

D
(j)
m′m(α, β, γ) = ⟨j,m′|U(α, β, γ)|j,m⟩

これの複素共役は

(D
(j)
m′m(α, β, γ))∗ = ⟨j,m|U†(α, β, γ)|j,m′⟩

ベクトル演算子の定義 (5)の左辺をオイラー角による回転演算子として

U†(α, β, γ)TqU(α, β, γ) = eiγJz/ℏeiβJy/ℏeiαJz/ℏTqe
−iαJz/ℏe−iβJy/ℏe−iγJz/ℏ

ハウスドルフの公式（A,B は演算子、λは定数）

e−λABeλA = B − [A,B]λ+
1

2!
[A, [A,B]]λ2 − 1

3!
[A, [A, [A,B]]]λ3 + · · ·

を使うと

eiαJz/ℏTqe
−iαJz/ℏ = Tq +

iα

ℏ
[Jz, Tq] +

1

2!
(
iα

ℏ
)2[Jz, [Jz, Tq]] + · · ·

= Tq +
iα

ℏ
∑

r=±1,0

Tr⟨r|Jz|q⟩+
1

2!
(
iα

ℏ
)2[Jz,

∑
r=±1,0

Tr⟨r|Jz|q⟩] + · · ·

ごちゃごちゃするので |j,m⟩での j を省いて書いています。第 3項は

[Jz,
∑

r=±1,0

Tr⟨r|Jz|q⟩] =
∑

r=±1,0

[Jz, Tr]⟨r|Jz|q⟩

=
∑

r,s=±1,0

Ts⟨s|Jz|r⟩⟨r|Jz|q⟩

=
∑

s=±1,0

Ts⟨s|J2
z |q⟩

となるので
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eiαJz/ℏTqe
−iαJz/ℏ = Tq +

iα

ℏ
∑

r=±1,0

Tr⟨r|Jz|q⟩+
1

2!
(
iα

ℏ
)2

∑
r=±1,0

Tr⟨r|J2
z |q⟩+ · · ·

=
∑

r=±1,0

Tr(δqr +
iα

ℏ
⟨r|Jz|q⟩+

1

2!
(
iα

ℏ
)2⟨r|J2

z |q⟩+ · · · )

=
∑

r=±1,0

Tr⟨r|(1 +
iα

ℏ
Jz +

1

2!
(
iα

ℏ
)2J2

z + · · · )|q⟩

=
∑

r=±1,0

Tr⟨r| exp[
i

ℏ
αJz]|q⟩

これに外から βJy の回転演算子を作用させ

eiβJy/ℏeiαJz/ℏTqe
−iαJz/ℏe−iβJy/ℏ =

∑
r=±1,0

eiβJy/ℏTre
−iβJy/ℏ⟨r| exp[ i

ℏ
αJz]|q⟩

これは Jz が Jy、αが β に変わっただけなので

∑
r=±1,0

eiβJy/ℏTre
−iβJy/ℏ⟨r| exp[ i

ℏ
αJz]|q⟩ =

∑
r,s=±1,0

Ts⟨s| exp[
i

ℏ
βJy]|r⟩⟨r| exp[

i

ℏ
αJz]|q⟩

=
∑

s=±1,0

Ts⟨s| exp[
i

ℏ
βJy] exp[

i

ℏ
αJz]|q⟩

最後に γJz を同様に作用させることで

U†(α, β, γ)TqU(α, β, γ) =
∑

q′=±1,0

Tq′⟨j, q′| exp[
i

ℏ
γJz] exp[

i

ℏ
βJy] exp[

i

ℏ
αJz]|j, q⟩

=
∑

q′=±1,0

Tq′⟨j, q′|U†(α, β, γ)|j, q⟩

=
∑

q′=±1,0

(D
(j)
qq′(α, β, γ))

∗Tq′
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