
WKB近似でのトンネル効果

WKB近似を使ったトンネル効果の確率を求めます。その後に、α崩壊のガモムモデルに触れます。最後に数値を

入れてますが、かなり雑です。

ほとんど「WKB近似」と同じ話です。

V ′ は dV (x)/dxです。

　 1次元シュレーディンガー方程式として

iℏ
∂

∂t
ψ(x, t) = Ĥψ(x, t)

時間依存部分を分離して

(− ℏ2

2m

d

dx
+ V (x))ψ(x) = Eψ(x) (1)

このときのポテンシャル V を、x < x1 と x2 < xでは E < V、x1 < x < x2 では E > V とします。x < x1 を領

域 I1、x1 < x < x2 を領域 I2、x2 < xを領域 I3 とします (「WKB近似」と E, V の関係が逆になっているだけ

なので、x1 を x2、x2 を x1 にすれば対応する)。それぞれの領域でのWKB近似の波動関数は

I1, I3 : ψ1,3(x) ≃
C√
F (x)

exp[− i

ℏ

∫
dx F (x)] +

D√
F (x)

exp[
i

ℏ

∫
dx F (x)] (2a)

I2 : ψ2(x) ≃
C ′√
|F (x)|

exp[−1

ℏ

∫
dx |F (x)|] + D′√

|F (x)|
exp[

1

ℏ

∫
dx |F (x)|] (2b)

F (x)は
√

2m(E − V (x))です。トンネル効果を見たいので、I2 で反射する反射波と、I2 を超えて I3 に到達する

透過波を考えます。I1 では入射波（xの正方向に動く）と反射波 (xの負方向に動く)がいるとして

CIe
ikx + CRe

−ikx (k > 0)

に対応させます。第 1項が入射波、第 2項が反射波で、CICR がそれぞれの確率振幅になります。今の積分は

dS

dx
=

d

dx

∫ x

x0

dx F (x) = F (x) > 0

となっているので、xの増加で S は増加します (S は負)。これは kxに対応するので、I1 での入射波と反射波は

CI√
F (x)

exp[
i

ℏ

∫ x

x1

dx F (x)] +
CR√
F (x)

exp[− i

ℏ

∫ x

x1

dx F (x)]

1



そして、入射波の振幅は 1に選び、波動関数に位相因子を加えても影響がないので接続のときに出てくる ±i4/π
を加えて

ψ1(x) ≃
1√
F (x)

(
exp[

i

ℏ

∫ x

x1

dx F (x) + i
π

4
] + CR exp[− i

ℏ

∫ x

x1

dx F (x)− i
π

4
]
)

=
1√
F (x)

(
exp[i(

1

ℏ

∫ x

x1

dx F (x) +
π

4
)] + CR exp[−i( 1

ℏ

∫ x

x1

dx F (x) +
π

4
)]
)

=
1√
F (x)

(cosΘ1 + i sinΘ1 + CR cosΘ1 − iCR sinΘ1) (Θ1 =
1

ℏ

∫ x

x1

dx F (x) +
π

4
)

=
1√
F (x)

((1 + CR) cosΘ1 + i(1− CR) sinΘ1) (3)

I3 では透過波だけがいるとして

ψ3(x) ≃
CT√
F (x)

exp[
i

ℏ

∫ x

x2

dx F (x) + i
π

4
)] =

CT√
F (x)

(cosΘ2 + i sinΘ2) (4)

CT が透過波の確率振幅になります。CR, CT を接続公式から求めます。

　エアリー方程式とその解は

d2Ψ

dz2
= zΨ , Ψ(z) = aAi(z) + bBi(z)

a, bは任意定数です。解の漸近形は z ≫ 0では

Ai(z) ≃ 1

2
√
πz1/4

exp[−2

3
z3/2]

Bi(z) ≃ 1√
πz1/4

exp[
2

3
z3/2]

z ≪ 0は

Ai(z) ≃ 1√
π(−z)1/4

sin[
2

3
(−z)3/2 + π

4
]

Bi(z) ≃ 1√
π(−z)1/4

cos[
2

3
(−z)3/2 + π

4
]

となっています。

　まずは、x1 側を接続するために、I1 でのエアリー方程式の解を作ります。I1 では x < x1、V ′ = dV/dx は

V ′(x1) > 0なので、x1 付近でのシュレーディンガー方程式は

d2ψ

dx2
= zψ (g1 = (

2m

ℏ2
V ′(x1))

1/3 , z = g1(x− x1))
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z < 0なので、z ≪ 0の漸近形を使います。このときの F 2(x)は x = x1 周りで

F 2(x) = 2m(E − V (x)) ≃ −2mV ′(x1)(x− x1) = −2m
ℏ2

2m
g31(x− x1) = ℏ2g21(−z)√

F (x) =
√
ℏg1(−z)1/4

積分は

∫ x1

x

dx′ F (x′) = ℏg2
∫ x1

x

dx′
√
−z′ = −ℏ

∫ 0

−z

dz′
√
z′ =

2ℏ
3
(−z)3/2

これらから、z = g1(x− x1) ≪ 0において

Ai(z) ≃
√

ℏg1
π

1√
F (x)

sin[
1

ℏ

∫ x1

x

dx′ F (x′) +
π

4
]

=

√
ℏg1
π

1√
F (x)

sin[−1

ℏ

∫ x

x1

dx′ F (x′) +
π

4
]

=

√
ℏg1
π

1√
F (x)

cos[
1

ℏ

∫ x

x1

dx′ F (x′) +
π

4
]

=

√
ℏg1
π

1√
F (x)

cosΘ1

Bi(z)は

Bi(z) ≃
√

ℏg1
π

1√
F (x)

cos[
1

ℏ

∫ x1

x

dx′ F (x′) +
π

4
]

=

√
ℏg1
π

1√
F (x)

cos[−1

ℏ

∫ x

x1

dx′ F (x′) +
π

4
]

=

√
ℏg1
π

1√
F (x)

sin[
1

ℏ

∫ x

x1

dx′ F (x′) +
π

4
]

=

√
ℏg1
π

1√
F (x)

sinΘ1

(3)と比較すれば、定数は

1 + CR = aλ1 , i(1− CR) = bλ1 (λ =

√
ℏg
π
) (5)

と求まります。
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　 (2b)の定数を決めるために、I2 でのエアリー方程式の解を求めます。x1 付近では x1 < x, E < V なので

F (x) = ±i|F (x)| , |F (x)|2 = 2m|E − V (x)| ≃ ℏ2g31 |x− x1| = ℏ2g21z

積分は

∫ x

x1

dx′|F (x′)| = ℏg1
∫ x

x1

dx′ z1/2 =
2ℏ
3
z3/2

そうすると、z = x− x1 ≫ 0の漸近形から

Ai(z) ≃
√

ℏg1
π

1

2
√
|F (x)|

exp[−1

ℏ

∫ x

x1

dx′|F (x′)|]

Bi(z) ≃
√

ℏg1
π

1√
|F (x)|

exp[
1

ℏ

∫ x

x1

dx′|F (x′)|]

x1 で接続するので (2b)は

ψ
(1)
2 (x) ≃

C
(1)
−√

|F (x)|
exp[−1

ℏ

∫ x

x1

dx |F (x)|] +
C

(1)
+√

|F (x)|
exp[

1

ℏ

∫ x

x1

dx |F (x)|]

となり、定数は

C
(1)
− =

a

2
λ1 , C

(1)
+ = bλ1 (6)

となります。

　次に x2 側を接続します。I3 では x2 < x, V ′(x2) < 0なので

d2ψ

dx2
= g32(x2 − x)ψ (g2 = (

2m

ℏ2
|V ′(x2)|)1/3 , z = g2(x2 − x))

F (x)は

F 2(x) ≃ −2mV ′(x2)(x− x2) = ℏ2g21(−z)∫ x

x2

dx′ F (x′) = −ℏ
∫ z

0

dz′
√
−z′ = 2ℏ

3
(−z)3/2

z ≪ 0の漸近形から
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Ai(z) ≃
√

ℏg2
π

1√
|F (x)|

sin[
1

ℏ

∫ x

x2

dx′|F (x′)|+ π

4
] =

λ2√
|F (x)|

sinΘ2

Bi(z) ≃
√

ℏg2
π

1√
|F (x)|

cos[
1

ℏ

∫ x

x2

dx′|F (x′)|+ π

4
] =

λ2√
|F (x)|

cosΘ2

(4)と比較して

CT = b′λ2 , iCT = a′λ2 (7)

I2 では x < x2、V ′(x2) < 0なので

|F (x)|2 ≃ −2mV ′(x1)|x− x2| = ℏ2g21z∫ x2

x

dx′|F (x′)| = −ℏ
∫ 0

z

dz′
√
z′ =

2ℏ
3
z3/2

から、z ≫ 0の漸近形は

Ai(z) ≃
√

ℏg2
π

1

2
√

|F (x)|
exp[−1

ℏ

∫ x2

x

dx′|F (x′)|]

Bi(z) ≃
√

ℏg2
π

1√
|F (x)|

exp[
1

ℏ

∫ x2

x

dx′|F (x′)|]

このときの (2b)は

ψ
(2)
2 (x) ≃

C
(2)
−√

|F (x)|
exp[−1

ℏ

∫ x

x2

dx |F (x)|] +
C

(2)
+√

|F (x)|
exp[

1

ℏ

∫ x

x2

dx |F (x)|]

なので

C
(2)
− = b′λ2 , C

(2)
+ =

a′

2
λ2 (8)

となります。

　定数が求まりましたが、ψ(1)
2 と ψ

(2)
2 は同じ関数として繋がっている必要があるので

C
(1)
−√

|F (x)|
exp[−1

ℏ

∫ x

x1

dx |F (x)|] +
C

(1)
+√

|F (x)|
exp[

1

ℏ

∫ x

x1

dx |F (x)|]

=
C

(2)
−√

|F (x)|
exp[−1

ℏ

∫ x

x2

dx |F (x)|] +
C

(2)
+√

|F (x)|
exp[

1

ℏ

∫ x

x2

dx |F (x)|]
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左辺の積分範囲は

∫ x2

x1

=

∫ x

x1

+

∫ x2

x

によって、右辺の範囲にできるので

W = exp[−1

ℏ

∫ x2

x1

dx′|F (x′)|]

として

exp[−1

ℏ

∫ x

x1

dx |F (x)|] = exp[−1

ℏ
(

∫ x2

x1

−
∫ x2

x

)dx |F (x)|] =W exp[−1

ℏ

∫ x

x2

dx |F (x)|]

exp[
1

ℏ

∫ x

x1

dx |F (x)|] = exp[
1

ℏ
(

∫ x2

x1

−
∫ x2

x

)dx |F (x)|] =W−1 exp[
1

ℏ

∫ x

x2

dx |F (x)|]

これらから

C
(1)
− W = C

(2)
− , C

(1)
+ W−1 = C

(2)
+ (9)

定数の関係 (5)～(8)をまとめると

1 + CR = aλ1 , i(1− CR) = bλ1

C
(1)
− =

a

2
λ1 , C

(1)
+ = bλ1

C
(2)
− = b′λ2 , C

(2)
+ =

a′

2
λ2

CT = b′λ2 , iCT = a′λ2

(9)を使えば

CT = b′λ2 = C
(2)
− = C

(1)
− W =

1

2
(1 + CR)W

iCT = a′λ2 = 2C
(2)
+ = 2C

(1)
+ W−1 = i2(1− CR)W

−1

よって、透過率と反射率の確率振幅は

CT =
4W

4 +W 2
, CR = CT

4−W 2

4W
=

4−W 2

4 +W 2
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WKB近似は運動量変化が小さいときに有効なので、F の x1から x2の積分は大きな値にならないとすれば S2の

オーダまでで

CT ≃W , CR ≃ (1− W 2

4
)(1− W 2

4
) ≃ 1− W 2

2

というわけで、WKB近似でのトンネル効果の確率は

|CT |2 ≃W 2 = exp[−2

ℏ

∫ x2

x1

dx′|F (x′)|] = exp[−2γ] (10)

と求まります。

　この結果を α崩壊に使います。α崩壊は原子核崩壊の一種で、崩壊時にヘリウムを放出します。放出されるヘリ

ウムを α粒子と呼んでいます。簡単に言えば、原子番号 (陽子の数)Z、質量数 (陽子と中性子の数)Aの原子核が

(Z,A) → (Z − 2, A− 4) + He

となる現象です。Heはヘリウムで Z = 2、A = 4(陽子が 2個、中性子が 2個のヘリウム 4)です。陽子と中性子

は原子核内で束縛されており、原子核の外に出れるだけのエネルギーを持ちません。しかし、α崩壊ではヘリウム

が放出されます。これをトンネル効果によって説明するモデルがガモフ (Gamow)モデルです。

　ガモフモデルは単純な発想で作られています。原子核内での陽子と中性子には、核力と呼ばれる強い引力と、電

荷を持つ陽子によるクーロン力が働いていると考えられています。核力は陽子、中性子を強く束縛しますが、核

力は原子核の大きさ程度で作用し、それを超えると寄与しなくなります。このため、原子核半径あたりからクー

ロン力に切り替わると考えて、原子核半径でポテンシャルの切り替えを行います。そして、ヘリウムは実際に放出

されるので、原子核内で正のエネルギーを持つとされます (負のエネルギーでは井戸型ポテンシャルに閉じ込めら

れてるような状況)。

　古典的に見ておきます。原点から原子核の半径 rまでは引力による負のポテンシャル V−があるとします。エネ

ルギー E が正ならポテンシャルを超えていきます。一方で、同じ符号の電荷 Qによるクーロン力は

fe = αe
Q1Q2

x2

αe は比例定数です。なので、これのポテンシャルは

Ve(x) = −
∫ x

∞
dx fe = αe

Q1Q2

x

これが原子核半径 r 付近で V− より強く寄与しだし、ポテンシャルを正にするとします。このとき、E < Ve(r)

であるなら、粒子はポテンシャルを超えられなく閉じ込められます。Ve > E がいると、運動エネルギー K が

K = E − Ve < 0として負の値を持つため、古典的には先に進むことが禁止されるからです。同じ電荷同士では反

発するのでポテンシャルが壁になるのは変に思えますが、最初からクーロン力のみが作用しているなら

E = K + αe
Q1Q2

x
(11)
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として、ポテンシャルが xの増加で減少し運動エネルギーが増加する領域に粒子がいるのに対して、今はその領

域にいないためです。

　このように、古典的には粒子は原子核に閉じ込められた状況です。しかし、クーロン力は減少するので、量子力

学ではトンネル効果によって Ve(r
′) = E となる地点に抜けていけます。そうして、(11)の領域にたどり着けば、

今度はクーロン力の反発によって遠くへ飛び出して行きます。これがガモフモデルの考え方です。これとWKB近

似を合わせます。

　細かいことを言えば、球対称なポテンシャルでの 3次元シュレーディンガー方程式から始めるべきですが、最

初から 1次元としても話は同じなので、1次元シュレーディンガー方程式 (1)とします。

　原子番号 Z の原子核の電荷 Ze (eは素電荷)と電荷 Qの粒子によるクーロン力は

fe = αe
ZeQ

x2

これのポテンシャルは

V (x) = −
∫ x

∞
dxF = αe

ZeQ

x
=
ρ

x

αeは例えば SIなら αe = 1/4πϵ0です。これが x1から発生しているとしたのがガモフモデルです (原点から x1ま

では負のポテンシャルのみ)。x2 で E, V の大きさが逆になるので E = V (x2)です。なので、領域 I2 での F は

F2(x) =

√
2m(

ρ

x
− E)

これによるW の exp内の積分は

S2 =

∫ x2

x1

dxF2(x) =
√
2mE

∫ x2

x1

dx

√
ρ

Ex
− 1

=
√
2mE

∫ x2

x1

dx

√
x2
x

− 1

=
√
2mEx2

∫ 1

x1/x2

dx′
√

1

x′
− 1 (x′ =

x

x2
, dx′ =

1

x2
dx)

x2 で E = V (x2)になるので E = ρ/x2 です。積分は

∫
dx

√
1

x
− 1 = − 2

∫
dθ sin θ cos θ

√
1

cos2 θ
− 1 (x = cos2 θ , dx = −2 sin θ cos θ)

= − 2

∫
dθ sin θ cos θ

sin θ

cos θ

= − 2

∫
dθ sin2 θ

=
1

2
sin 2θ − θ

= sin θ cos θ − θ
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積分範囲は ϕ = arccos
√
x1/x2 から 0なので

∫ 1

x1/x2

dx

√
1

x
− 1 = −(sinϕ cosϕ− ϕ)

逆三角関数の関係

sin(arccos y) =
√
1− y2

から

sinϕ cosϕ− ϕ =

√
1− x1

x2

√
x1
x2

− arccos

√
x1
x2

=

√
x1
x2

− x21
x22

− arccos

√
x1
x2

よって

S2 =
√
2mEx2

∫ 1

x1/x2

dx

√
1

x
− 1 = −

√
2mE

(
x2

√
x1
x2

− x21
x22

− x2 arccos

√
x1
x2

)
=

√
2mE

(
x2 arccos

√
x1
x2

−
√
x1(x2 − x1)

)
x2 が x1 より十分大きいとすれば

arccos y ≃ π

2
− y (y ≪ 1)

と近似できるので

S2 ≃
√
2mE(x2(

π

2
−
√
x1
x2

)−
√
x1x2) =

√
2mE(

π

2
x2 − 2

√
x1x2)

x21 は無視しています。x2 を消すように変形すれば

π

2

√
2mEx2 =

π

2

√
2mE

ρ

E
=
πρ

2

√
2m

E

2
√
2mE

√
x1x2 = 2

√
2mE

√
ρ

E

√
x1 = 2

√
2ρm

√
x1

となるので
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S2 =
πρ

2

√
2m

E
− 2

√
2ρm

√
x1

と書けます。透過率 (10)に入れれば

|CT |2 = exp[−2
S2

ℏ
] = exp[−2(

π

2

ρ

ℏ

√
2m

E
− 2

√
2ρ

ℏ2
m
√
x1)]

となります。ちなみに、γ = S2/ℏはガモフ因子と呼ばれます。
　ウラン (Z = 92, A = 238)で計算してみます。ヘリウム 4は陽子が 2個、中性子が 2個なので Q = 2eとして

ρ = αeZeQ = 2αeZe
2

これによって

γ =
S2

ℏ
=
π

2

ρ

ℏ

√
2m

E
− 2

√
2ρ

ℏ2
m
√
x1 =

αeZe
2

ℏ
π

√
2m

E
− 4

√
αeZe2

ℏ2
m
√
x1

= Z
αee

2

ℏc
cπ

√
2m

E
− 4

√
c

ℏ
Z
αee2

ℏc
m
√
x1

cは光速です。最後の書き換えは

αee
2

ℏc
≃ 1

137

となる量がよく使われるからです。これは微細構造定数と呼ばれる無次元量です。αeの次元を {αe}、電荷の次元
を {Q}、長さ、質量、時間の次元を L,M, T とすれば

αee
2

ℏc
⇒ {αe}{Q}{Q}

L2MT−1LT−1
=

{αe}{Q}{Q}
L3MT−2

(ℏ = 1.055× 10−34[m2 · kg · s−1])

クーロンの法則から

F = αe
Q1Q2

r2
⇒ LMT−2 =

{αe}{Q}{Q]

L2

なので

αee
2

ℏc
⇒ {αe}{Q}{Q}

L3MT−2
=
LMT−2

LMT−2
= 1

となって、電磁気の単位系の選び方とは無関係な無次元量です。例えば SIで行えば
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αee
2

ℏc
=

e2

4πϵ0ℏc
=

1

4π

(1.6× 10−19)2

8.9× 10−12

1

1× 10−34 × 3× 108
≃ 1

137

この値を入れて

γ =
Z − 2

137
cπ

√
2m

E
− 4

√
c

ℏ
Z − 2

137
m
√
x1

ヘリウム 4の放出で原子核は Z − 2になるので Z を Z − 2に変えています。大体の値として、x1 = 9× 10−15[m]、

ヘリウム 4の質量は 6× 10−27[kg]、エネルギーは 7× 10−13[J]です。これらの値を入れると γ ≃ 40となるので、

確率は

|CT |2 = e−80 = 2× 10−35

また、x2 はエネルギーから

x2 =
ρ

E
= 2(Z − 2)

αee
2

ℏc
ℏc
E

≃ 180

137

ℏc
E

≃ 6× 10−16[m]

となります。実際の実験で見てるのは確率そのものでなく、崩壊率と呼ばれる量なので、それを導入します。

　原子核の半径は x1 なので、2x1 を速度 vで移動する時間は

∆t =
2x1
v

この間にN0個の粒子がポテンシャルに衝突し、いくつかが通り抜けて行くとします。ポテンシャルを通り抜けて

いく個数はN0|CT |2 なので、粒子数の減少∆N は

∆N = −N0Γ∆t (|CT |2 = Γ∆t)

Γを崩壊率と呼び、時間あたりの確率です (∆N は時間∆tで崩壊する個数)。この式を微分方程式にすると

dN(t)

dt
= −ΓN(t) ⇒ N(t) = N0e

−Γt

個数が半分になる時間を半減期と呼び、その時間を τ とすれば

N0

2
= N0e

−Γτ

log
N0

2
= logN0 − Γτ

− log 2 = − Γτ

τ = Γ−1 log 2
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と与えられます。

　というわけで、今の崩壊率は

Γ =
|CT |2

∆t
=

v

2x1
e−2γ ≃ v

2x1
e−80

飛んでいくヘリウム 4の運動エネルギーを E と同じと設定してしまえば

v

2x1
=

1

x1

√
E

2m
≃ 8× 1020 (E =

1

2
mv2)

となり

Γ =
1

x1

√
E

2m
e−80 ≃ 2× 10−14[s−1]

半減期は

τ = Γ−1 log 2 ≃ 2× 1013[s] ≃ 6× 105年

実験では 4× 109年程度です。大分離れた値になりましたが、エネルギーや x1の値を少し変えるだけで大きく変動

します (109 年まで簡単に増やせる)。なので、値を求めるという点では不確かさの大きいモデルとなっています。
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